

Integrated Phosphor - FED (IPFED)

Device Properties

- Lateral emitter
- Micro-encapsulated pixels
- Thin film oxide phosphors
- Monolithic (single substrate)
- CMOS compatible

Process Steps

- Lithography (11 levels) (g-line \rightarrow i-line)
- Materials Deposition
 - ➢ Sputter deposition (4)
 - ≻ Low pressure CVD (2)
 - ➤ Thermal evaporation (1)
 - ➢ Ion implantation (2)
 - Etching
 - ➢ Reactive Ion Etch (10)

Wet Etching (1) *MENT Research Group Oak Ridge National Laboratory*

10x10 Prototype Development

Active Matrix Thin Film Transistors for Biological Application

Vertically aligned carbon nanofibers (VACNFs)

VACNF growth process in DC-PECVD

- (a) Catalyst (Ni) deposition,
- (b) Catalyst pretreatment/nanoparticle formation
- (c) Growth of carbon nanofibers.

Applications of VACNF

- (A) Self aligned field emission source
- (B) Electrically addressed partial nanopipe
- (C) Massively parallel needlelike arrays for gene delivery
- (D) Vertical membranes (via nanofiber crowding) on microfluidic platforms

(E) Individually addressable electrochemical probe arrays.

MENT Research Group Oak Ridge National Laboratory

Materials Science and Engineering The University of Tennessee

VACNF intracellular/extracellular arrays for cell probing

Vertical-aligned carbon nanofiber array for cell probing (passively addressed)

Intracellular probing into live cells

Extracellular probing nerve cell from rat brain on a chip

- Electrically addressed individual nanofibers enable probing and manipulation of live cells.
- Deficiencies: limited probe density, can not simultaneously stimulate and record due to \geq passive driving scheme.

Materials Science and Engineering The University of Tennessee

<u>Goal:</u> Integrate TFT array with VACNF for intracellular probing device

- Inverted-staggered back-channel etched (BCE) structure
- > 20 x 20 array (400 electrodes), 50 μ m pitches
- High temperature compatible materials for VACNF growth ~700°C

TFT fabrication; BCE process

Process sequence of TFT fabrication with back channel etch structure. (a) Gate electrode (Cr 250 nm), (b) active layers (gate SiN_x 300 nm, a-Si:H 200 nm, n⁺ a-Si 50 nm), (c) source-drain electrode (Cr 300 nm), (d) back channel etch and post-treatment, (e) passivation (SiN_x 350 nm), (f) cross-sectional SEM image of inverted-staggered

SEM images of TFT arrays

Intracellular probing TFT Array

Materials Science and Engineering The University of Tennessee

Extracellular probing TFT Array

UT-BATTELLE Management Contractor for DOE's Oak Roge National Laboratory

Intra/extracellular TFT Device Characteristics II

- Intracellular probing with VACNF
- Unbiased sputter deposition
- Likely has more defects in films and consequently worse TFT device characteristics

- Extracellular probing with via hole
- Biased sputter deposition
- Improved electrical properties of TFT versus unbiased thin films
 - Lower leakage
 - higher transfer slope

Electrochemistry with grounded V_G, V_{DS} (Extracellular)

Crystallization of sputter deposited a-Si

■ During biased sputtering ion enhanced nucleation occurs which enhances the growth velocity during the post-deposition anneal → large grain and high

The University of Tennessee

a-Si:H recrystallization: Microstructure properties

Materials Science and Engineering The University of Tennessee

Acknowledgement

- DEAL Device
 - DARPA Advanced Lithography Program
- Field Emission Array
 - AVT
- TFT array
 - NIH (National Institute for Biomedical Imaging and Bioengineering 1-R01EB000433-01)
 - Center for Nanophase Materials Sciences (ORNL)
 - DARPA Advanced Lithography Program

