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Nonlinear phase change in type II second-harmonic
generation under exact phase-matched conditions
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The process of type II second-harmonic generation has been investigated theoretically. It is found that, unlike
in the process of type I second-harmonic generation, phase matching is not necessary for a significant shift of
the pump wave phase to be produced. The simple inequality of the intensities of interacting waves suffices for
this effect to occur.

Late in the 1960's the strong self-action of pump
waves by means of the reaction of a second-harmonic
wave in the process of second-harmonic generation
(SHG) was predicted.' Recently interest in cascaded
second-order nonlinearity has been rekindled because
of the prospects of using this nonlinearity in all-
optical devices, e.g., nonlinear Mach-Zehnder inter-
ferometers, nonlinear direction couplers,2 and optical
transistors.3

The effect of the nonlinear phase change of a
pump wave caused by cascaded second-order non-
linearity has been observed in KTiOPO4 crystal.4
In Refs. 1 and 4 the theory of the nonlinear phase
change in the type I SHG process has been de-
veloped, and it has been shown that there is no
phase change in the type I SHG process under exact
phase matching, Ak = k(2co) - 2k(co) = 0. The ef-
fect appears only when the wave-vector mismatch
is nonzero. The situation is quite different for the
type II SHG process, and this is shown below.

In this Letter we consider the type II SHG process
and the conditions when the nonlinear phase shift is
possible.

The type II SHG process is characterized by the in-
teraction of two pump waves that have different po-
larizations. Thus this interaction is nondegenerate,
and the conditions for phase matching are

k,(co) + k2(w) = k3 (2co),

kl(w) # k2 (W) 0 - k3(2w). (1)
2

The nondegenerate three-wave interaction in the ap-
proximation of a slowly varying amplitude is given by
the following system of equations:

az 2= l X X (w; 2co,- ))E2*E3 exp(-iAkz),

az 2n2c X(2)(w;2co, - )E,*E 3 exp(-iAkz),

3 = i2nwc X(2
)(2w ;-t, -w)ElE 2 exp(iAkz),

where E, are the complex amplitudes of the electric
fields of the interacting waves, ni are the refractive

indices, Ak = kl(w) + k2(W) - k3(2ow) is a wave-vector
mismatch, the subscripts i = 1, 2 correspond to pump
waves 1 and 2, and the subscript i = 3 corresponds
to the wave of the second harmonic.

Below we consider only media without any dis-
sipation, and hence Kleinman symmetry relations
can be applied and Eqs. (2) can be expressed in
terms of common nonlinear d coefficients by deff =

Ix 
2

1(
2c o; co, co)I1/2. Introducing the scaling of the am-

plitudes as

Ai = Ei ni F-E) ,
k210 / AO

where so and /1o are the dielectric and magnetic per-
meabilities of the vacuum and Io is the normalizing
intensity, we are led to the following system:

a-1 = iFA2 *A3 exp(-iAkz),

-A2 = irAj*A 3 exp(-iAkz),

a-3 = i2FA1 A2 exp(iAkz),

where

(3)

r _ deff (2Io /A10
C i tl1fl2 \ 8go

The solution of system (3) was carried out nu-
merically. An analysis of the results is presented
below. The calculated value of F was taken to be
equal to 15 cm-', which corresponds to the normaliz-
ing power Io = 1 GW/cm2 and the material constants
of KTiOPO4 (Ref. 5) for pump waves of 1.064-Am
wavelength (n, = 1.8297, n2 = 1.7421, and n3 =

1.7859 and deff = 7.33 x 10-12 m/V for the propa-
gation direction with respect to the main crystal axes
a = 90° and p = 23.7°).

Let us consider the case for which the conditions
of phase matching are exactly satisfied, i.e., Ak = 0.
The results of the numerical calculations of the power
and the phase evolutions with distance for this case
are presented in Figs. 1 and 2. If the powers of the
pump waves are equal, these dependencies are the
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Fig. 1. Evolution of (a) the intensities and (b) the
phases of two pump waves (dashed curves, wave 1; solid
curve, wave 2) and the second-harmonic wave (dotted
curves) for exact phase matching. The input intensities
of the pump waves are unequal (P1 = 0.07 GW/cm2 ,
P2 = 0.1 GW/cm 2 ).
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Fig. 2. Evolution of (a) the intensities and (b) the
phases of two pump waves (dashed curves, wave 1; solid
curve, wave 2) and the second-harmonic wave (dotted
curves) for exact phase matching. The input intensities
of the pump waves are unequal (Pi = 0.05 GW/cm2 ,
P2 = 0.1 GW/cm 2).

same as for type I phase matching.6 The phases of
the interacting waves do not change with distance;
they have a relationship such that the energy con-
version goes into the second harmonic but does not
go in the opposite direction. The nonperiodicity of
this process may be understood under more careful
consideration of the system of Eqs. (3). Indeed, the
driving force [the right-hand sides of Eqs. (3)] at the

frequency 2w produces a second-harmonic wave with
such a phase that the driving force at the frequency Co
is in opposite phase to the pump waves. In addition,
the Manely-Rowe relations would hold for nondissi-
pative media [see, for example, Eq. (2.50) of Ref. 6],
which in our case are

A1 A 1
2 = A1A212

= - 2 A JA 3 12 ,

where A IAi 12 is the change of intensity of the
ith wave. It is evident that, if the pump inten-
sities at the input are equal, the intensities are
exhausted simultaneously. When this occurs all
driving forces become equal to zero, and the process
become irreversible.

An essentially different picture is observed if the
intensity of one pump wave at the input to the nonlin-
ear medium is unequal to the other. Figure 1 shows
the situation in which the initial intensities differ by
1.4 times. One can see that the process of the energy
exchange between the interacting waves is periodi-
cal under these conditions. The power of the pump
wave with smaller initial value goes to zero at reg-
ularly spaced intervals, and the power of the other
pump wave remains nonzero. At the same time the
phase of the first wave suffers a steplike change of 7r.
At the same moment the direction of the process is
changed to the side of downconversion and remains
the same until the power of the second-harmonic
wave becomes zero. At that moment the phase of
the second harmonic is changed by 7r, and the process
changes direction to the side of upconversion. Then
the process is repeated.

To clarify the physical sense we return to the sys-
tem of Eqs. (3). Let the power of pump wave 1 be
smaller than that of pump wave 2. It is clear from
the Manley-Rowe relations that in this case the
power of wave 2 is nonzero when the power of wave 1
is zero. As this takes place, the driving forces in the
second and third equations of Eqs. (3) are zero, and
the nonzero driving force produces a wave with fre-
quency co polarized as the initial wave 1 and having
its phase shifted by 7r with respect to that of the ini-
tial wave 1. The phase change leads to a change of
the process direction to that of the downconversion.
The intensity of the second harmonic starts to be di-
minished; at the moment of its complete depletion the
driving forces in the two first equations of Eqs. (3) be-
come zero. The nonzero force in the third equation
produces a wave with the frequency 2co with its phase
shifted with respect to the phase of the second har-
monic before it becomes zero. The phase change of
the second-harmonic wave leads to a change of the
process direction to that of the side of upconversion.

Figure 2 shows the evolution of the energy-
exchange period with a change in the ratio of the
powers of the pump waves at the input to the nonlin-
ear medium. Figure 2 shows the reduction of this
period with decreasing power of the smaller wave
while the power of the other pump wave remains
constant.

The process of type II SHG under nonzero wave-
vector mismatch and unequal pump-wave powers is
shown in Fig. 3 and has the following characteristics:
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Fig. 3. Evolution of (a) the intensities and (b) the phases
of two pump waves (dashed curves, wave 1; solid curves,
wave 2) and the second-harmonic wave (dotted curves) for
the case of nonzero wave-vector mismatch, Ak = 3 cm-'.
The input intensities of the pump waves are unequal
(P, = 0.05 GW/cm 2 , P 2 = 0.1 GW/cm 2 ).

(1) The amplitude of the pump wave with smaller
input power never becomes zero.

(2) The nonlinear phase change of this wave in one
period is less than 7r and is reduced with the growth
of the mismatch.

(3) The phase change of the pump wave with larger
power is also nonzero.

(4) The amplitude of the second-harmonic wave pe-
riodically becomes zero, and its phase at these mo-
ments shifts by 7r.

(5) The period of energy exchange decreases with
the growth of the wave-vector mismatch.

Under equal powers of the pump waves in type II
SHG and with nonzero wave-vector mismatch, the
characteristics of the process are equal to those of
the one described in Ref. 4.

In conclusion, the remarkable peculiarities of the
type II SHG process have been clarified. It has been"
determined that the process is periodic under exact
phase matching and unequal initial intensities of the
pump waves. The most remarkable point is that un-
der the same conditions the phase of the wave with a
smaller intensity exhibits an abrupt (steplike) change
of Ir.
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