Nanopipe fabrication using vertically aligned carbon nanofiber templates
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We report a method to fabricate tubular nanostructures using vertically aligned carbon nanofibers
grown by plasma-enhanced chemical vapor deposition as templates. The resulting nanopipes are
oriented perpendicular to the substrate and have internal diameters ranging from 30 to 200 nm and
can be up to several micrometers in length. These nanopipes can be deterministically positioned on
a substrate and arranged into singular devices or arrays20@ American Vacuum Society.
[DOI: 10.1116/1.1515306

[. INTRODUCTION internal diameters ranging from 200 nm down to 30 nm.
— . Such nanopipes can be implemented as functional elements
Approaches to fabrication are needed for devices that re- PIpes plemented as .
; . o . in gas- and liquid-phase fluidic, biomimetic, and sensing de-
quire functional nanoscale features within a microscale or . . . S
) vices. Several applications of such devices can be envisioned
larger structure. A well-known approach provides structure taq

device components through a patterned sacrificial materia“1CIUdIng high-throughput sensing and analysis of molecular

layer2 A progression of this approach is the use of materialSPECIES, control elements in active fluidic transport systems,

that self-assemble into nanostructures, such as carbon nanfgi'd'C interfaces to viable cells or cell communitiés.g.,

tubes (CNTS) and carbon nanofibeCNFs, as sacrificial P°films), and as nanoporous membrafiégor molecular
templates. These templates can bestow properties of sizZ&ansport manipulation with very good control of the nano-
orientation, or placement on materials that would not otherPOr€ geometry.
wise assemble into such configurations. This hierarchical ap- The utility of vertically aligned carbon nanofibers
proach to nanofabrication allows the extension of self-(VACNFs) for nanoscale devices has been established, as a
assembly properties to many materials and provides a viabnariety of nanodevices utilizing VACNFs have been fabri-
way to simultaneously engineer devices over size scales th&gted. These include electrochemical probes designed for in-
vary by many orders of magnitude. tracellular characterizatichgated cathode field emittet$,

In this article we demonstrate the use of carbon nanofibergnd biomimetic membrane structure¥ACNFs that are a
as sacrificial templates for nanopipes, which are extendetew tens of nanometers in diameter and up to several microns
structures that can be as long as a few micrometers wittong can be catalytically grown by plasma-enhanced chemi-

cal vapor depositionfPECVD).2"! The position of each

3Electronic mail: acm@ornl.gov nanofiber can be defined by a patterning catalyst using
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tion of MIBK: isopropanol 1:1 for 1 min, rinsed in isopro-
% panol and blown dry with nitrogen. The Ti buffer lay&rO
///////% nm) and catalyst metalNi, 10 nm) were deposited by elec-
Fic. 1. Steps for fabrication of isolated nanopipés: Ni particles are de-  tron gun physical vapor depositiof®VD). The resist was
fined via EBL and the lift-off techniqueh) VACNF grown by PECVD;(c)  then dissolved in acetone so that the metal remained only on

VACNFs and substrate are coated with Sity PECVD; (d) resist is spun the exposed areas. The VACNFs were ng[Wig 1(b)] ina
on and the VACNF tips are opene() SiO, is removed from the tips by | :

RIE; (f) Ni particle is removed in HN@wet etch; andg) VACNF is etched gIOW discharge dc . plasma of ammqnia/acetyle(&O
away in G plasma. sccm/40 scemgas mixture at 700°C, with 2.5 Torr total

pressure and 150 mA dc current. Carbonaceous species de-
compose at the surface of the Ni particle, free carbon dif-
photo- or electron-beam lithograpl@¥BL) or potentially by  fuses through this particle, and it is deposited on the bottom
methods that self-assemble arrays of nanodotsexample, surface of the catalyst as described previotdigince the
see Ref. 1 and their orientation is determined by the di- synthesis is catalytically controlled, a VACNF emerges only
rection of the electric field lines during the growth at the positions where the catalyst was placed. The resultant
process:*° isolated VACNF and a dense forest of VACNFs grown from
Here we show that these properties of VACNF growth canunpatterned catalyst are shown in Fig. 2.
be transferred to the controlled synthesis of nanopipes that In the next stegFig. 1(c)] the nanofibers and the surface
can be deterministically created with defined location, num-of the chip were coated with a 100-nm-thick layer of $iO
ber (e.g., array or single length, and internal diameter. The using a silane-based PECVD process to form the walls of the
fabrication of nanopipes as described here can be integraté@nopipes. The scanning electron microsctpigM) images
in a parallel manner into microstructured substrates and latef encapsulated nanofibers are shown in Figa) 8nd 3b).
on-a-chip devices as we have previously demonstrated witfio open the tips of the nanopipes, resist was spun over the
VACNF-based device$®’ This process can be extended fur- surface of the chigShipley, Microposit 1818and its thick-
ther with the use of nanopipes as secondary templates. Weess was adjusted by reactive ion etchifiE) in oxygen
demonstrate this with the fabrication of metallic nanowires. plasma to uncover the tips of the nanopipe structiiFég.
1(d)]. The silicon oxide was removed from exposed areas
using RIE in CHR/O, rf plasma[Fig. 1(e)]. The resist was
Il. FABRICATION then dissolved in acetone or, alternatively, etched in RIE
The nanopipe fabrication process is depicted in Fig. 1oxygen-based plasma. The latter method is preferable since it
The VACNF catalyst particles were deposited on a Si subuncovered the catalyst particle from the carbon film that cov-
strate using a lift off procesiFig. 1(a)]. Electron-beam re- ered it after VACNF growttt* A small amount of the top
sist, polymethylmethocrylate (PMMA), was spun on the portion of the carbon nanofiber was etched directly under the
top surface and patterns were exposed. The size of the egatalytic particld Fig. 3(c)] during this RIE step, but VACNF
posed dots was chosen to be 100 nm in diameter to produaching did not continue with increased etch time. Thus this
isolated VACNF< The exposures were developed in a solu-step was followedya 1 min dip in nitric acid to remove the

Fic. 2. SEM images of an isolated and a dense forest of VACNF grown from
unpatterned catalysviewed at 30f. The bright spots are Ni particles.
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Fic. 4. Depth of the nanopipes vs etching time.

Ni particle that blocked access of etchant specms/gen
radicalg to the body of the VACNHFig. 1(f)].

With this access to the VACNF provided, subsequent RIE
in an oxygen plasma produced nanopip€sys. 1g) and
3(d)]. The etching rate depended on the diameter of the
nanofiber since a smaller diameter nanopipe was more re-
strictive to diffusive access of etchant species. Likewise, the
etching rate strongly decreased with time due to increased
nanopipes depttiFig. 4). This effect ultimately limits the
length of the possible nanopipe structures made using reac-
tive ion etching. Other methods of carbon oxidation and re-
moval may provide the means to produce higher aspect ratio
nanopipes.

IIl. FUNCTIONALITY

To characterize the quality of the internal structure of the
nanopipes and to test functionality as electrochemical nano-
probes(fluidic and ion transport propertigsve performed
metal electrodeposition experiments. For these experiments
we reduced Au from electroplating solutig®rotherm HT,
Technic, Ing inside the nanopipes to form Au nanowires. A
Pt wire dipped into solution above the structures served as
the anode, and the remains of the carbon nanofibers at the
bottom of the nanopipes where the cathodes contacted in
parallel through the Si substrate. In order to remove air
bubbles from the nanopipes, the sample was soaked and re-
frigerated in electroplating solution for 1 h. Am long
nanowires(bright rods in Fig. % were formed after plating
for 1 h at 60°Cwith —1 V on the cathode and current
compliance of the reducing voltage power supply set to 1
MA. The large cluster of gold in Fig. 5 was formed quickly
after one of the nanopipes was completely filled and mass
transport to the electroactive surface was less restricted. The
limited access of gas or liquid to the interior of the nanopipes
may be used to our advantage. For example, the rate of the
Fic. 3. SEM images of nanopipes at various steps during the fabricationmetal electrodeposition inside the nanopipe is much smaller
processi(@) an isolated VACNF encased in Si@80 nm; (b) an enlarged  than that at open tip nanostructures, and consequently can be

view of two VACNFs coated with Si@with a Ni nanoparticle visible as a .
bright spot;(c) encapsulation is opened at the tips and part of the VACNF ismOre preC|ser controlled. We have observed that the rate of

removed(slightly darker area along the VACNF aximnd(d) the VACNFis ~ gold electroplating inside the nanopipé&g. 9 is at least
partially etched out from inside the nanopipe. two orders of magnitude slower than the rate at the exposed
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