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Chapter 1

Inroduction

1.1 Continuum theory

Matter is formed of molecules which in turn consist of atoms and sub-atomic particles. Thus matter
is not continuous. However, there are many aspects of everyday experience regarding the behaviors
of materials, such as the deflection of a structure under loads, the rate of discharge of water in a
pipe under a pressure gradient or the drag force experienced by a body moving in the air etc., which
can be described and predicted with theories that pay no attention to the molecular structure of
materials. The theory which aims at describing relationships between gross phenomena, neglecting
the structure of material on a smaller scale, is known as continuum theory. The continuum
theory regards matter as indefinitely divisible. Thus, within this theory, one accepts the idea
of an infinitesimal volume of materials referred to as a particle in the continuum, and in every
neighborhood of a particle there are always neighbor particles. Whether the continuum theory
is justified or not depends on the given situation; for example, while the continuum approach
adequately describes the behavior of real materials in many circumstances, it does not yield
results that are in accord with experimental observations in the propagation of waves of extremely
small wavelength. On the other hand, a rarefied gas may be adequately described by a continuum
in certain circumstances. At any case, it is misleading to justify the continuum approach on the
basis of the number of molecules in a given volume. After all, an infinitesimal volume in the limit
contains no molecules at all. Neither is it necessary to infer that quantities occurring in continuum
theory must be interpreted as certain particular statistical averages. In fact, it has been known
that the same continuum equation can be arrived at by different hypothesis about the molecular
structure and definitions of gross variables. While molecular-statistical theory, whenever available,
does enhance the understanding of the continuum theory, the point to be made is simply that
whether the continuum theory is justified in a given situation is a matter of experimental test, not
of philosophy. Suffice it to say that more than a hundred years of experience have justified such
a theory in a wide variety of situations.

1.2 Continuum Mechanics

The analysis of the kinematic and mechanical behavior of materials modeled on the continuum
assumption is what we know as continuum mechanics. There are two main themes into which the
topics of continuum mechanics are divided. In the first, emphasis is on the derivation of fundamen-
tal equations which are valid for all continuous media. These equations are based upon universal
laws of physics such as the conservation of mass and the principles of energy and momentum. In
the second, attention focuses on the development of constitutive equations which characterize the
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4 CHAPTER 1. INRODUCTION

behavior of specific idealized materials, of which the perfectly elastic solid and the viscous fluid
are the best known examples. These equations provide the focal points for studies in elasticity,
plasticity, viscoelasticity, and fluid mechanics. Mathematically, the fundamental equations of con-
tinuum mechanics mentioned above may be developed in two separate but essentially equivalent
formulations. One, the integral or global form, derives from the basic principles applied to a finite
volume of the material. The other, a differential or field approach, leads to equations which result
from the basic principles applied to a very small (infinitesimal) element of volume. In practice,
it is often useful and convenient to deduce the field equations from their global counterparts. In
addition to the fundamental assumption of material continuity, we impose two further restrictions
on the bodies considered in this text. First, we require them to be homogeneous, that is, to
possess identical mechanical properties at all locations. And second, we consider in general only
those materials which are isotropic and which thereby have identical physical properties in every
direction at a given point. Anisotropic bodies will be mentioned only briefly. The continuum
assumption is the only one needed in the derivation of the general (field) equations. Those of
homogeneity and isotropy enter into the theory with the introduction of constitutive equations.
Boundary value problems in technical disciplines rooted in continuum theory are formulated in
terms of the basic field equations together with the appropriate constitutive equations and relevant
boundary conditions. Linear elasticity and classical fluid mechanics are the best known of these
disciplines, and an abbreviated discussion of these in the context of continuum mechanics is given
in this course.

1.3 Essential mathematics

1.3.1 Scalars, Vectors, and Tensors

LEARNING a discipline’s language is the first step a student takes towards becoming competent
in that discipline. The language of continuum mechanics is the algebra and calculus of tensors.
Here, tensors is the generic name for those mathematical entities which are used to represent the
important physical quantities of continuum mechanics. Only that category of tensors known as
Cartesian tensors is used in this text, and definitions of these will be given in the pages that
follow. The tensor equations used to develop the fundamental theory of continuum mechanics
may be written in either of two distinct notations the symbolic notation or the indices notation.
We shall make use of both notations, employing whichever is more convenient for the derivation
or analysis at hand, but taking care to establish the interrelationships between the two. As
it happens, a considerable variety of physical and geometrical quantities have important roles
in continuum mechanics, and fortunately, each of these may be represented by some form of
tensor. For example, such quantities as density and temperature may be specified completely by
giving their magnitude, that is, by stating a numerical value. These quantities are represented
mathematically by scalars, which are referred to as zeroth-order tensors. It should be emphasized
that scalars are not constants, but may actually be functions of position or time or both. Also,
the exact numerical value of a scalar will depend upon the units in which it is expressed. Thus
the temperature at a certain location may be given by either 680F or 200C. As a general rule,
lowercase Greek letters in italic print such as a, A, ), etc. will be used as symbols for scalars in
both the indicial and symbolic notations. Several physical quantities of mechanics such as force
and velocity require not only an assignment of magnitude, but also a specification of direction
for their complete characterization. As a trivial example, a 20 − N force acting vertically at a
point is substantially different than a 20 − N force acting horizontally at the point. Quantities
possessing such directional properties are represented by vectors, which are first-order tensors.
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Geometrically, vectors are displayed as arrows, having a definite length (the magnitude), a specified
orientation (the direction), and also a sense of action as indicated by the head and the tail of
the arrow. Certain quantities in mechanics which are not truly vectors are also portrayed by
arrows, for example, finite rotations. Consequently, in addition to the magnitude and direction
characterization, the complete definition of a vector requires the further statement that ”vectors
add (and subtract) in accordance with the triangle rule by which the arrow representing the vector
sum of two vectors extends from the tail of the first component arrow to the head of the second
when the component arrows are arranged ’head-to-tail.’ ” Although vectors are independent of
any particular coordinate system, it is often useful to define a vector in terms of its coordinate
components, and in this respect it is necessary to reference the vector to an appropriate set of axes.
In view of our restriction to Cartesian tensors, we limit ourselves to consideration of Cartesian
coordinate systems for designating the components of a vector. A significant number of physical
quantities having important status in continuum mechanics require mathematical entities of higher
order than vectors for their representation in the hierarchy of tensors. As we shall see, among
the best known of these are the stress tensor and the strain tensors. These particular tensors are
second-order tensors, said to have a rank of two. Third-order and fourth-order tensors are not
uncommon in continuum mechanics, but they are not nearly as plentiful as second-order tensors.
Henceforth, the unqualified use of the word tensor in this text means second-order tensor. With
only a few exceptions, primarily those which represent the stress and strain tensors, we shall
denote second-order tensors by upper-case Latin letters in bold-faced print, a typical example
being the tensor T . Tensors, like vectors, are independent of any coordinate system, but just
as with vectors, when we wish to specify a tensor by its components we are obliged to refer to
a suitable set of reference axes. The precise definitions of tensors of various order will be given
subsequently in terms of the transformation properties of their components between two related
sets of Cartesian coordinate

1.3.2 Conventions

As mentioned in the introduction, all laws of continuum mechanics must be formulated in terms of
quantities that are independent of coordinates. It is the purpose of this chapter to introduce such
mathematical entities. We shall begin by introducing a short-hand notation - the indicial notation,
which will be followed by the concept of tensors introduced as a linear transformation. The
basic field operations needed for continuum formulations and their representations in curvilinear
coordinates are presented after that.

Summation Convent

Consider the sum

s = a1 · x1 + a2 · x2 + a3 · x3 + · · ·+ an · xn

We can write the above equation in a compact form by using the summation sign:

s =
n∑

i=1

ai · xi, or s =
n∑

m=1

am · xm.

The index i or m in these equations is a dummy index in the sense that the sum is independent
of the letter used.

2. Consider the linear transformation of coordinates. Let a point P have coordinates
(x1, x2, . . . , xn). The new x

′
1, x

′
2, . . . , x

′
n coordinates of P may be expressed according the next
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equations

x
′

i =
n∑

j=1

lij · xj, (1.1)

The suffix j appears twice in the sums on the right-hand sides and sum over all possible values
of j. This situation occurs so frequently that it is convenient adopt convention which often avoids
the necessity of writing summation sing.

• SUMMATION CONVENTION. Whenever an index is repeated once, it is a dummy index
indicating a summation with the index running through the integers 1,2, ..., n.

This convention is known as Einstein’s summation convention. Using the summation conven-
tion equation (1.1) becomes simply

x
′

i = lij · xj, (1.2)

For example:
aii = amm = a11 + a22 + a33

aiei = a1e1 + a2e2 + a3e3.

The summation convention obviously can be used to express a double sum, a triple sum. etc.

3∑
i=1

·
3∑

j=1

aijxixj ⇐⇒ aijxixj

When the summation convention is in use, care must be taken to avoid using any suffix more
than twice in the same equation.

Free indices

Consider the following system of three equation

x
′
1 = a11x1 + a12x2 + a13x3

x
′
2 = a21x1 + a22x2 + a23x3

x
′
3 = a31x1 + a32x2 + a33x3

. (1.3)

Using the summation convention (1.3) can be written as

x
′
1 = a1mxm

x
′
2 = a2mxm

x
′
3 = a3mxm

.

Which can be shortened into
x
′
i = aimxm, i = 1, 2, 3. (1.4)

An index which appears only once in each term of an equation such as the index in eq. (1.4)
is called a ”free index”.

A further example is given by

e
′

m = Qmiei, m = 1, 2, 3

e
′

l = Qliei, l = 1, 2, 3.

ai = bj is a meaningless equation,
Tij = AimAjm i, j = 1, 2, 3.
But equation such as Tij = Tik have no meaning.



1.3. ESSENTIAL MATHEMATICS 7

Kronecker Delta

Kronecker delta is defined by

δij =

{
0, when i 6= j,
1 when i = j,

(1.5)

That is,

δ11 = δ22 = δ33 = 1,
δ12 = δ13 = δ21 = δ23 = δ31 = δ32 = 0.

In other words, the matrix of the Kronecker delta is the identity matrix, i.e.

[δij] =

 δ11 δ12 δ13
δ21 δ22 δ23
δ31 δ32 δ33

 =

 1 0 0
0 1 0
0 0 1

 .
We also will use the Kronecker delta with upper, down, and mixed suffix (upper and down)

δi.
.j = δ.j

i. = δij

δii = δ11 + δ22 + δ33 = 3,
δ1mam = δ11a1 + δ12a2 + δ13a3 = a1

δ2mam = δ21a1 + δ22a2 + δ23a3 = a2

δimTmj = δi1T1j + δi2T2j + δi3T3j = Tij

δimδmj = δij.

Manipulation with the Indicial Notation

Substitution

If ai = Uimbm and bi = Vimem. In order to substitute the bi’s into ai’s we first change the free
index from i to m and dummy index m to some other letter, say n so that

bm = Vmnen =⇒ ai = UimVmnen.

Multiplication

If p = ambm and q = cmdm then pq = ambmcndn.
It is important to note that pq 6= ambmcmdm.

Example 1. If a = aiei and b = biei then the dot product of vectors a and b is

−→a ·
−→
b = (ai

−→ei ) · (bj−→ej ) = aibj(
−→ei · −→ej ).

In particular, if −→e1 ,−→e2 ,−→e3 are unit vectors perpendicular to one another, then −→ei ·−→ej = δij, and
−→a ·

−→
b = aibjδij = aibi = ajbj = a1b1 + a2b2 + a3b3.

Factoring

If Tijnj − λni = 0 we can write ni = δijnj and we will have

Tijnj − λδijnj = 0 =⇒ (Tij − λδij)nj = 0.
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Contraction

The operation of identifying two indices and so summing on them is known as contraction. For
example, Tii is contraction of Tij

Tii = T11 + T22 + T33.

If Tij = λΘδij + 2µEij , then Tii = λΘδii + 2µEii = 3λΘ + 2µEii.

1.3.3 Linear algebra

Basic definitions and examples

We consider a vector space V over the field R, where R is a set of real numbers.
The operation of adding two vectors in V.
First, note that the result is again a vector in V.

∀−→v ,−→w ∈ V =⇒ −→v +−→w ∈ V closure under addition (1.6)

(−→v +−→w ) +−→z = −→v + (−→w +−→z ) associative property (1.7)

−→v +−→w = −→w +−→v commutative property (1.8)

There is the vector
−→
0 = (0, 0, . . . , 0) with the property

−→v +
−→
0 =

−→
0 +−→v = −→v (1.9)

The vector
−→
0 is called a zero vector (an additive identity).

Furthermore, given any vector −→v ∈ Rn, there is another vector (−−→v ), so that

−→v + (−−→v ) = (−−→v ) +−→v =
−→
0 (1.10)

The vector (−−→v ) is called an additive inverse for −→v .
Any set V with an operation + satisfying the five properties given (1.6-1.9) is called an Abelian

group.
Thus V is an abelian group under the operation of vector addition.
There is another operation in V , and that is the operation of multiplying a real number

(scalar) times a vector to get a new vector. Given a ∈ R,−→v ∈ V, then

a−→v ∈ Rn − closure under scalar multiplication. (1.11)

This scalar multiplication obeys some properties:

a(b−→v ) = b(a−→v ) associative property (1.12)

a(−→v +−→w ) = a−→v + a−→w distributive property 1 (1.13)

(a+ b)−→v = a−→v + b−→v distributive property 2 (1.14)

1 · −→v = −→v ∀−→v , (1.15)

where 1 is the identity of scalar multiplication.

Definition 1.1. A set V that forms an Abelian group under + and has an operation of
multiplication on real number a by an element −→v ∈ V to get another element a−→v ∈ V satisfying
the properties (1.12)-(1.15) is called a vector space (over the real numbers).
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Basis

Definition 1.2. (linearly dependent) A set of n−th vectors −→a1 ,
−→a2 , . . . ,

−→an is said to be linearly
dependent if and only if there are n− real numbers β1, β2, . . . , βn not all zero such that βi

−→ai = 0.
Otherwise it is called linearly independent.

A vector space V is said to be of finite dimension or to be n-dimensional, written as dimV = n,
if there exists a set of linearly independent vectors −→e1 ,−→e2 , . . . ,−→en, which spans V.

Definition 1.3. (basis) Any set of linearly independent vectors −→e1 ,−→e2 , . . . ,−→en of n-dimensional
space is called a BASIS.

Confirmation of this definition is the foolowing theorem.

Theorem 1.1.
Let V be n-dimensional vector space. Then

(i) any set of n+ 1 or more vectors is linearly dependent;
(ii) any linearly independent set of vectors can be a part of a basis, i.e., can be extended to a basis;
(iii) any linearly independent set of vectors composes a basis.

Theorem 1.2. The vectors −→v1 ,
−→v2 , . . . ,

−→vn in a vector space V are linearly independent if
c1
−→v1 + c−→2v2 + . . .+ cn

−→vn = 0 if and only if all ci = 0.

Example 2. (2, 3, 5), (1, 4, 2), (1,−1, 3) ∈ R3.
We form the linear combination

c1(2, 3, 5) + c2(1, 4, 2) + c3(1,−1, 3) = (0, 0, 0).

c1 · 2 + c2 · 1 + c3 · 1 = 0
c1 · 3 + c2 · 4 + c3 · −1 = 0 =⇒
c1 · 5 + c2 · 2 + c3 · 3 = 0

 2 1 1
3 4 −1
5 2 3

 c1
c2
c3

 =

 0
0
0


or A−→c =

−→
0 , but det(A) = 0 we can find c = (−1, 1, 1) such that -1·(2, 3, 5) + 1 · (1, 4, 2) + 1 ·

(1,−1, 3) = (0, 0, 0).
This vectors are linearly dependent.
(Algorithm for Independence). If −→v1 ,

−→v2 , . . . ,
−→vn is a collection of vectors in Rn,then they are

independent iff the matrix equation A−→e =
−→
0 has only trivial solution, where A is the matrix

whose j−th column vector is −→vj .

Example 3. p1 = 2− 3 · x2, p2 = 1 + 2x− x2, p3 = 1 + x+ x2

To check whether they are independent, we write c1p1 + c2p2 + c3p3 and solve for (c1, c2, c3)
c1(2− 3x2) + c2(1 + 2x− x2) + c3(1 + x+ x2) = 0.
Collecting terms gives
(2c1 + c2 + c3) + (2c2 + c3)x+ (−3c1 − c2 + c3)x

2 = 0

we have the matrix equation A−→c =
−→
0

A =

 2 1 1
0 2 1
−3 −1 1

 =⇒

 2 1 1
0 2 1
0 0 9/4

 ; det(A) 6= 0

So that the only solution is −→c = 0. Thus the three polynomials are independent.

Example 4. (basis) The four matrices(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
Form a basis for all 2 by 2 matrices

Example 5. The polynomials 1, x, · · · , xn form a basis for the vector space P n(R,R) of
polynomials of degree less than or equal to n.
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Exercise 1.
For each part determine whether the given vectors are linearly independent
(a) (1, 2, 3), (4, 5, 6), (7, 8, 9)
(b) (2, 1, 4), (3, 9, 2), (3, 6, 2), (4, 7, 2)
(c) (1, 1, 1), (1, 1, 0), (1, 0, 0)
(d) (1, 5, 2, 7), (3, 2, 1, 5), (3, 2, 1, 1), (2, 6, 2, 1)
We denote basis as {ei}n

1 or if the value n is known from text we will denote basis simply as
{ei}.

For instance: basis vectors −→e1 = (1, 0, . . . , 0) , −→e1 = (1, 0, . . . , 0), −→e1 = (1, 0, . . . , 0), . . . ,−→e1 =
(1, 0, . . . , 0) are form the basis of the n−dimensional vector space.

Remark 1.5. If we use notation Zj
i for matrix then upper index j is a number of row, and

the lower index i is a number of column.
COVARIANT and CONTRAVARIANT coordinates
Let {ei}n

1 be a basis in V . We define the set of vectors {ei}n
1 which satisfies the property:

(ei, ej) = δi
j (i, j = 1, 2, . . . , n)

Exercise 2. Prove that {ei}n
1 is a basis.

The basis {ei}n
1 , which corresponds to the basis {ei}n

1 is called a co–basis.

Exercise 3. Prove that if {ei} is an orthogonal basis, then the co-basis {ei} is also orthogo-
nal.

If ei = ei, i = 1, 2, ..., n (if the basis {ei} coincides with its cobasis {ei}) in this case the basis
{ei} is orthonormal basis (orthobasis).

Remark 1.5. An orthonormal basis we will call an orthobasis.
Every element of vector spce p ∈ V has a unique expression as linear combination

p = piei, p = pie
i.

Definition 1.4. The coordinates pi are called covariant cooordinates of p with respect to the
cobasis {ei}, the coordinates pi are called contravariant components of p with respect to the basis
{ei}.

Exercise 4.
(a) Show that the vectors (1, 1, 1), (1, 1, 0), (1, 0, 0) are basis of R3.
(b) Find the cobasis corresponding to a given basis.
(c) let p = (1, 0, 1) be a vector of R3. Find covariant and contravariant components of p with

respect to the basis and cobasis.
Let {ei} is the ”old” basis and {e′i} is the ”new” one. We can write

e
′

i = Aj
iej; e

′i = Ai
je

j

Definition 1.5. A matrix (A) = (Aj
i ) is called a transition matrix from the basis {e′i} to the

basis {ei}.

Theorem 1.3. The matrix A = (Ai
j) is an inverse matrix of A ( A = A−1).

Proof. We have e
′
i = Aj

iej and e
′i = Ai

je
j. We have to show (A)=(A−1) or

Ai
j · A

j
l = δi

l ,

e
′i = Ai

je
j
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e
′i · e′l = Ai

je
j · e′l = Ai

je
j · Am

l em = Ai
jA

m
l e

j · em = Ai
jA

m
l δ

j
m = Ai

jA
j
l = δi

l

Example 6. Let {e′i}3
1 be e

′
1 = (1,−1, 3), e

′
2 = (2, 1, 0), e

′
3 = (1, 1, 1) and {ei}3

1 is standard
basis of R3 e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

Then Aj
i is easy to find, since we can write

e
′
1 = 1 · e1 − 1 · e2 + 3 · e3
e
′
2 = 2 · e1 + 1 · e2 + 0 · e3
e
′
3 = 1 · e1 + 1 · e2 + 1 · e3

=⇒ (Aj
i ) =

 1 −1 3
2 2 0
1 1 1


Example 7. Consider an arbitrary vector p having components p

′
i and p

′i in the basis {e′i}
and {e′i} and pi and pi in the basis {ei} and {ei}. Show that

p
′

i = Aj
ipj, p

′i = Ai
jp

j

Solution.

p = p
′
ie

′i = p
′
iA

i
je

j,

p = pje
j,

we can see that pj = p
′
iA

i
j = Ai

jp
′
i,

Aj
l pj = Aj

lA
i
jp

′
i = δi

lp
′
i = p

′

l, =⇒ p
′

l = Aj
l pj.

We can use the same way to proof second equality.

Exercise 5. Prove that p
′i = Ai

jp
j.

Linear Transformations

Definition 1.6. A linear transformation L : Rn −→ Rm is a function satisfying the property:
∀λ, µ ∈ R and a, b ∈ Rn there is

L 〈λa+ µb〉 = λL 〈a〉+ µL 〈b〉

Example 8. A function L : Rn −→ Rm is given by L 〈−→v 〉 = A−→v (where A is a m by
n matrix and −→v is being considered as a column vector) satisfies this property and so it is a linear
transformation.

A rotation by an angle θ corresponds to the multiplication by the matrix(
cos θ − sin θ
sin θ cos θ

)
.

A set of all linear transformations L : Rn −→ Rm is Euclidean space. We will use a notation
L(Rn, Rm) for this set.

In the case L(Rn, Rn) it will be used the notation L(Rn).

Definition 1.7. A linear transformation L : V −→ W is called an isomorphism if it is
one-to-one transformation V on W . The vector spaces V and W are called ISOMORPHIC.

Proposition.

If V and W are finite dimensional vector spaces, then they are isomorphic iff they have the
same dimension.
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Linear transformation and matrices

There is a close relation between linear transformations L(Rn, Rm) and m by n matrices.
Let we have a linear mapping L : Rn −→ Rm and {ei}n

1 ∈ Rn, {fj}m
1 ∈ Rm be bases of Rn

and Rm. respectively. Then
L〈ej〉 = Li

jfi, (j = 1, 2, ..., n) (1.16)

Definition 1.8. A matrix L = (Li
j) whose entries Li

j satisfy (1.16) is called the matrix
that represents L with respect to the bases {ei} and {fj} (or matrix of the linear mapping L with
respect to the bases {ei} and {fj} ).

If {e′i} ∈ Rn and {f ′
j} ∈ Rm are other bases. Let (L)

′
= (L

′i
j ) is the matrix of the same linear

transformation L . Then we have
(L)(A) = (B)(L)

′
,

where (A) = (Ar
i ) and (B) = (Bs

j ) are the transition matrices

e
′

i = Ar
i er; f

′

j = Bs
jfs.

In fact, we have
L〈er〉 = Ls

rfs, L〈e′i〉 = L
′j
i f

′

j ,

L〈Ar
i er〉 = L〈e′i〉 = L

′j
i f

′

j = L
′j
i B

s
jfs,

L〈Ar
i er〉 = Ar

iL〈er〉 = Ar
iL

s
rfs,

and we can see that
Ar

iL
s
rfs = L

′j
i B

s
jfs or (L)(A) = (B)(L)

′
.

COMPOSITION of linear transformations K ◦ L where L : Rn −→ Rm is defined by the rule

K ◦ L 〈a〉 = K 〈L 〈a〉〉

If (L) = (Lj
i ) and (K) = (Ks

j ) are matrices of L and K with respect to corresponding bases,

then (K ◦ L) = (Ks
jL

j
i ) with respect to the same bases.

The case m = n. We say that a linear transformation L ∈ L(Rn) is non-singular if det(L) 6= 0.
Let a linear map L : Rn −→ Rn be non-singular, then there is the inverse mapping L−1.

Definition 1.9. Let L : Rn −→ Rn be a linear transformation. An eigenvalue of L is a
number λ ∈ R such that there is a nonzero vector −→e ∈ Rn with L 〈−→e 〉 = λ−→e . Such vector −→e is
called an eigenvector of L associated with this eigenvalue.

How can the eigenvalues and eigenvectors for L be found? In many cases these can be found
via geometric descriptions of L.

Example 9. Consider the reflection to the plane x + y + z = 0 in R3. Any vector in the
plane is mapped to itself. Thus vectors in the plane are eigenvectors for the eigenvalue 1. The
basis (1,−1, 0), (1, 0,−1) of the plane gives two eigenvectors for the eigenvalue 1. The normal
vector (1, 1, 1) to the plane is transformed to its negative via reflection, so it is an eigenvector for
the eigenvalue −1.

We now show that the eigenvalues of L are the same as the eigenvalues of the corresponding
matrix.

We define the characteristic polynomial of L to be the characteristic polynomial of a matrix
(L), which represents L.

Firstly we prove, that if λ is eigenvalue of map L then λ is eigenvalue of matrix (L). If λ is
an eigenvalue of L with corresponding eigenvector −→v and we choose −→v to be a first vector in the
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basis of Rn. Then the matrix (L), which represents L with respect to this basis has in the first
column and in the first row only one element λ, because L 〈−→v 〉 = λ−→v . It means that λ is one of
the eigenvalues of the matrix (L).

Conversely, if λ is an eigenvalue of matrix (L), it means that there is vector–column −→w ∈ Rn

with property Lj
iwj = λwi. Let us consider vector −→w = wie

i, where {ei} is a basis in Rn. Then

L 〈−→w 〉 = L
〈
wje

j
〉

= wjL
〈
ej
〉

= wjL
j
ie

i = Lj
iwje

i = λwie
i = λ−→w .

Therefore, eigenvalues of L are precisely the roots of the Characteristic polynomial of L

det(L− λI) = 0

where I is the unit matrix. For the case n = 3 a characteristic polynomial has the form

λ3 − J1λ
2 + J2λ− J3 = 0

where Jk are invariants of the transformation L ((L) is a matrix of the mapping L).
These invariants have special names
trace L: J1 = tr(L) = L1

1 + L2
2 + L3

3 = Li
i (or sp(L) from German ”Spur”).

the second invariant:

J2 = J2(L) =

∣∣∣∣ L1
1 L1

2

L2
1 L2

2

∣∣∣∣+ ∣∣∣∣ L1
1 L1

3

L3
1 L3

3

∣∣∣∣+ ∣∣∣∣ L2
2 L2

3

L3
2 L3

3

∣∣∣∣ .
J2(L) =

1

2
(tr2L− tr L2) =

1

2
(Li

iL
j
j − Li

jL
j
i )

the third invariant:

J3(L) = det(L) = det

∣∣∣∣∣∣
L1

1 L1
2 L1

3

L2
1 L2

2 L2
3

L3
1 L3

2 L3
3

∣∣∣∣∣∣
J3(L) =

1

6

[
tr3(L)− 3tr (L) tr (L)2 + 2 tr (L)3

]
We note that, in terms of eigenvalues of L, which are roots of the characteristic equation, the

invariants take the simplest form

J1 = λ1 + λ2 + λ3, J2 = λ1λ2 + λ2λ3 + λ3λ1,
J3 = λ1λ2λ3.

The Hamilton-Kelly identity is

L3 − J1L
2 + J2L− J3I = 0

Let L ∈ L(Rn) be a linear transformation and (L) = (Li
j) be a representation of L in some

basis. Note that the numbers Ji and det ((L)) do not depend on the basis. Therefore one can
define the functions from the set of linear transformations L(Rn) into R:

tr L = Li
i, detL = det ((L)).

Some properties of the invariants

tr(K + L) = tr(K) + tr(L),
det(K ◦ L) = det(K) · det(L)



14 CHAPTER 1. INRODUCTION

The case m = 1.
A linear transformation Φ : Rn −→ R is called a linear form defined on the space Rn. The

space L(Rn;R) is called conjugate to the space Rn and we use the notation Rn∗.
There exists a metrical isomorphism κ : Rn ↔ Rn∗, which determines a one-to-one correspon-

dence between vectors b ∈ Rn and linear forms: a linear form is given by the formula

κ(b) < a >= a · b

Theorem 1.4. For any linear form Φ : Rn −→ R there exists unique vector bΦ such that

Φ < a >= bΦ · a

Bilinear forms

A function Φ : Rn × Rn −→ R is called a bilinear form over Rn space if for all λ, µ ∈ R and
a, b, c ∈ Rn

Φ 〈λa+ µb, c〉 = λΦ 〈a, c〉+ µΦ 〈b, c〉

Φ 〈a, λb+ µc〉 = λΦ 〈a, b〉+ µΦ 〈a, c〉

If Φ 〈a, b〉 = Φ 〈b, a〉, then this form is called a symmetric form.
A bilinear form g determined by the formula

g 〈a, b〉 = a · b

is called a fundamental form of Rn space.

Example 10. If L ∈ L(Rn), then the function Φ 〈a, b〉 = a · L 〈b〉 is a bilinear form.

Theorem 1.5. For any bilinear form Φ over Rn there exists unique linear transformation
L ∈ L(Rn) such that

Φ < a, b >= a · L < b > .

Exercise 6. Prove the theorem.
The theorem establishes isomorphism between the set of bilinear forms Φ over Rn and the

space of linear transformations L ∈ L(Rn). For instance, the fundamental form g corresponds to
the identical transformation.

Let us consider a linear transformation L ∈ L(Rn). Φ. The form Φ∗ defined by the formula

Φ∗ < a, b >= b · L < a >

is a bilinear form. According to the theorem there exists the linear transformation L∗ such that

Φ∗ < a, b >= a · L∗ < b > .

Hence,
a · L∗ < b >= Φ∗ < a, b >= b · L < a > .

Therefore, for any linear transformation L ∈ L(Rn) there exists unique linear transformation
L∗ ∈ L(Rn) that

a · L∗ < b >= b · L < a > .
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The linear transformation L∗ is called conjugate to a linear transformation L.
In the same orthonormal basis {ei} the matrix of (L∗) is a transpose matrix of the matrix (L).
Properties of ∗:

(L+N)∗ = L∗ +N∗, (L ◦N)∗ = N∗ ◦ L∗, tr(L) = tr(L∗), tr(L ◦N) = tr(N ◦ L),

tr(K∗ ◦ L) = tr(K ◦ L∗) =
n∑

i,j=1

Kj
iL

j
i ,

where (K) = (Ks
j ) and (L) = (Lj

i ).

Definition 1.10. A trace of composition of K and L∗ (or K∗ and L) is called a dot product
(or a scalar product) of the transformations K and L. We use the notation

K : L = tr(K∗ ◦ L) = tr(K ◦ L∗).

Note that
K : L = L : K

Symmetry

Definition 1.11. A linear transformation L is called a symmetric linear transformation if
L∗ = L and antisymmetric (or skew-symmetric) if L∗ = −L.

The set of symmetrical linear transformations we denote by Ls(R
n).

If L is a linear mapping, then we can write L = Ls + La, where

Ls =
1

2
(L+ L∗), La =

1

2
(L− L∗).

Here Ls is symmetric and La is antisymmetric. This representation of L through symmetric and
antisymmetric transformations is unique. If Ls(R

n) is the set of symmetric transformations and
La(R

n) is the set of antisymmetric transformations, then they are linear subspaces of L(Rn) and

L(Rn) = La(R
n)⊕ Ls(R

n)

• All eigenvalues of symmetric linear transformations are real. Non-zero eigenvalues of anti-
symmetric linear transformations are purely imaginary.

• If L is a symmetric linear transformation, then there is an orthobasis in Rn for which the
matrix (L) is diagonal.

Let an antisymmetric linear transformation A ∈ La(R
3) have the following matrix with respect

to some orthonormal basis {ei}

(A) =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 .
One can obtain the vector −→a = ai−→ei . Assume that {e′i} is another orthonormal basis {ei} and the
matrix representation of the antisymmetric transformation A in this basis is (A)′. For this matrix

one finds the vector −→a ′ = a′i
−→
e′i .

Exercise 7. Prove that −→a ′ = −→a .
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Hint. The transition matrix T from an orthonormal basis to another orthonormal basis is
orthogonal:

T−1 = T ∗.

Therefore we constructed one-to-one mapping from La(R
3) onto R3. For this mapping one can

determine the inverse linear transformation E : R3 −→ La(R
3), which acts according to

E 〈−→a 〉 = A.

Exercise 8. Prove that E is an isomorphism.
Note that

(E < a >) < b >= −(E < b >) < a >= (E∗ < b >) < a > .

Definition 1.12. A cross or vector product of two vectors u and v, denoted by u × v is
a vector quantity. A direction of u× v is the direction of the extended thumb when the fingers of
the right hand are closed from u to v (origins coinciding) through the smallest possible angle θ
(0 ≤ θ ≤ π). The magnitude of u× v is defined by

| u× v | = uv sin θ

(The magnitude of u× v is the area of the parallelogram determined by u and v).

Definition 1.13. A vector product of a vector a = (a1, a2, a3) with a vector b = (b1, b2, b3)
defined as a new vector

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1),

where ai, bi are components with respect to an orthobasis.

Definition 1.14. One can verify that

E 〈−→a 〉
〈−→
b
〉

= −→a ×
−→
b

Definition 1.15. A vector product of a = aie
i, b = bie

i in an orthonormal basis {ei}

a× b =

 e1 e2 e3

a1 a2 a3

b1 b2 b3

 .
It is easy to verify the following rules governing these products

u× v = −v × u;

u× (v + w) = u× v + u× w;

u× u = 0;

u× v = 0 ⇔ u is either parallel to v or u = 0 or v = 0.
The product (u× v) · w is called the box or triple scalar product.
Its geometrical interpretation depends on its sign:
(a) If (u× v) · w > 0, then (u× v) · w is the volume of the parallelepiped defined by u, v, w.

In this case we say that u, v, w form a right-handed triad of vectors.
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(b) If (u × v) · w < 0, then (u × v) · w is the negative of the volume of the parallelepiped
whose sides are u, v, w . In this case u, v, w form a left-handed triad.

(c) If (u× v) · w = 0, the vectors u, v, w are coplanar (parallel to the same plane).
It follows from the geometrical interpretation that

(u× v) · w = u · (v × w).

The product (u× v)×w is called a triple vector product. In general, the triple vector product
is not associative:

(u× v)× w 6= u× (v × w).
The vector product (u× v)× w of three or more vectors can be reduced to simpler products

with the aid of the identity
(a× b)× c = b(a · c)− c(a · b).

This is known as ”back cab” rule.

Example 11. Let A be any symmetric n × n matrix. Then we can define a symmetric
bilinear form BA : Rn ×Rn −→ R

BA(−→x ,−→y ) = −→x ∗A−→y

Here −→x and −→y are considered as column–vectors.
Symmetry is derived from the fact that A = A∗:

BA(−→y ,−→x ) = −→y ∗A−→x = −→y ∗A∗−→x = −→x ∗A−→y = BA(−→x ,−→y ).

Definition 1.16. A linear transformation O ∈ L(Rn) is called an orthogonal transformation
if it satisfies

O ◦O∗ = I.

For the orthogonal transformations it is fair the formulae

O∗ = O−1, det([O]) = ±1.

Any composition of two orthogonal transformations is orthogonal.

Definition 1.17. A linear transformation A is called an equivalent transformation to A if
there exists an orthogonal transformation O such that

A = O ◦ A ◦O∗

Let a function f : Ls(R
n) → Ls(R

n) be a function, which maps a linear symmetric transfor-
mation into a linear symmetric transformation.

Definition 1.18. A mapping f : Ls(R
n) → Ls(R

n) is called an invariant mapping with
respect to orthogonal transformations if for any orthogonal transformation O there is

f(O ◦ A ◦O∗) = O ◦ f(A) ◦O∗.

In continuum mechanics such functions are called isotropic functions.
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Theorem 1.6. All continuous isotropic functions f : Ls(R
n) → Ls(R

n) have the represen-
tation

f(A) =
n−1∑
k=0

ϕkA
k,

where the coefficients ϕk are scalar functions only invariants of a linear transformation A.
Proof. We will prove this theorem for n = 3.
We choose orthogonal basis {ei} and we consider all linear transformations in this basis. Let

A be a symmetrical linear transformation. Because the matrix A is a symmetrical matrix, there
exists an orthogonal matrix O such that

A = O ◦ A ◦O∗ =

 a1 0 0
0 a2 0
0 0 a3

 ,

where ai (i = 1, 2, 3) are eigenvalues of the matrix A.
We show that the matrix B = O ◦ f(A) ◦O∗ = f(A) is also a diagonal matrix.
In fact, let the matrix B has the representation

B =

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 .

We take the orthogonal matrix

O1 =

 1 0 0
0 −1 0
0 0 −1

 .

Then by virtue of that O1O is an orthogonal matrix, we obtain

O1BO
∗
1 = O1(Of(A)O∗)O∗

1 = f(O1OA(O1O)∗) = f(O1AO
∗
1).

But O1AO
∗
1 = A, and

O1BO
∗
1 =

 b11 −b12 −b13
−b21 b22 b23
−b31 b32 b33

 = f(A) = B.

We obtained b12 = b13 = 0. Similarly, we find that b23 = b32 = 0 and bii = fi(a1, a2, a3). If we take
the orthogonal transformation

O2 =

 0 1 0
1 0 0
0 0 1

 ,

then

O2BO
∗
2 =

 b22 0 0
0 b11 0
0 0 b33

 = f(O2AO
∗
2) = f

 a2 0 0
0 a1 0
0 0 a3

 .

This means

f1(a2, a1, a3) = f2(a1, a2, a3), f2(a2, a1, a3) = f1(a1, a2, a3), f3(a2, a1, a3) = f3(a1, a2, a3).

We will consider some cases.
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10. Assume that (a1−a2)( a2−a3)(a3−a1) 6= 0. Let us consider the linear system of equations

bii = α+ βai + γa2
i (i = 1, 2, 3)

with respect to α, β, γ. The determinant of this system is (Gramma’s determinant)

∆ = det

 1 a1 a2
1

1 a2 a2
2

1 a3 a2
3

 = (a1 − a2)( a2 − a3)(a3 − a1) 6= 0.

Because ∆ 6= 0, then

α =
1

∆
det

 b11 a1 a2
1

b22 a2 a2
2

b33 a3 a2
3

 , β =
1

∆
det

 1 b11 a2
1

1 b22 a2
2

1 b33 a2
3

 , γ =
1

∆
det

 1 a1 b11
1 a2 b22
1 a3 b33

 .

The functions α = α(a1, a2, a3), β = β(a1, a2, a3), γ = γ(a1, a2, a3) have property that they are
unaltered by interchanges of pairs of a1, a2, a3. In fact, for example, ∆′ = −∆,

α(a2, a1, a3) =
1

∆′ det

 f1(a2, a1, a3) a2 a2
2

f2(a2, a1, a3) a1 a2
1

f3(a2, a1, a3) a3 a2
3

 = − 1

∆
det

 f2(a1, a2, a3) a2 a2
2

f1(a1, a2, a3) a1 a2
1

f3(a1, a2, a3) a3 a2
3

 = α(a1, a2, a3).

Definition 1.19. Any function f(x1, x2, x3) whose value is unaltered by interchanges of pairs
of x1, x2, x3 is said to be symmetrical in x1, x2, x3.

Theorem 1.7. A continuous symmetrical function can be expressed as a function of the
invariants f(x1, x2, x3) = g(J1, J2, J3), where J1 = x1 + x2 + x3, J2 = x1x2 + x2x3 + x3x1, J3 =
x1x2x3.

Hence,

α = α(J1(A), J2(A), J3(A)), β = β(J1(A), J2(A), J3(A)), γ = γ(J1(A), J2(A), J3(A))

and B = αI + βA+ γA
2
. But B = O ◦B ◦O∗, thus

B = O∗ ◦B ◦O = αI + βO∗ ◦ A ◦O + γO∗ ◦ A2 ◦O = αI + βA+ γA2.

20. Let a1 = a2 6= a3, then f2(a1, a2, a3) = f1(a1, a2, a3) and we consider the equations

bii = α+ βai + γ0 (i = 1, 3)

By virtue of a1 6= a3, we have

α =
1

a3 − a1

det

(
b11 a1

b33 a3

)
, β =

b33 − b11
a3 − a1

.

The functions α = α(a1, a2, a3), β = β(a1, a2, a3) are again symmetrical functions of a1, a2, a3, and
they are functions of invariants

α = α(J1(A), J2(A), J3(A)), β = β(J1(A), J2(A), J3(A)).

In this case we have B = αI + βA. Hence, we get

B = O∗ ◦B ◦O = αI + βO∗ ◦ A ◦O = αI + βA.

30. Let a1 = a2 = a3, then b11 = b22 = b33 and we consider the equation

b11 = α.

The function α is a symmetrical function of a1, a2, a3, therefore α = α(J1(A), J2(A), J3(A)) and

B = O∗ ◦B ◦O = αI.
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Multilinear transformations

Definition 1.20. A transformation u : Rn × . . .×Rn︸ ︷︷ ︸ −→ Rm is said to be r–multilinear (or

simply multilinear) if it is linear in each variable.
For multilinear transformation u : Rn × . . .×Rn︸ ︷︷ ︸ −→ Rm we write

(a1, a2, . . . , ar) −→ u 〈a1, a2, . . . , ar〉 ∈ Rm,

where ai ∈ Rn.
A linear transformation (r = 1) is a particular case of multilinear transformation. Bilinear

forms (r = 2; m = 1) are also particular cases of multilinear transformations.

Definition 1.21. A multilinear transformation with values in R (m = 1) is called a multi-
linear form defined in Rn.

1.4 Tensors

Definition 1.22. A multilinear (r-linear) form Φ defined in Rn is called a tensor. The number
r > 0 is called an order of the tensor Φ.

Let {ei} be a basis and {ei} be the cobasis in Rn. The numbers Φ 〈a1, a2, . . . , ar〉 are called
components of the tensor Φ of order r in the basis {ei} or {ei}, where the vectors as, (s = 1, . . . , r)
are from the basis or cobasis. If all as belong to the basis {ei}, then the components of the tensor
Φ are called covariant components:

Φi1,i2,...,ir = Φ 〈ei1 , ei2 , . . . , eir〉 .

If all as belong to cobasis {ei}

Φk1,k2,...,kr = Φ
〈
ek1 , ek2 , . . . , ekr

〉
,

then they are contravariant components of Φ. All other types of components are called mixed
components of Φ. Mixed components of Φ are called p times covariant and q times contravariant
if we use p vectors from the basis and q vectors from the cobasis.

A tensor of order r has only 2r different types of components. The number of components of
each type is equal to nr.

Change of tensor components

The formulae for changing tensor components are obtained from the properties of linear forms.
Let A and A be transition matrices

e′i = Aj
iej; e′

i
= A

i

je
j.

Covariant components of a tensor are changed by the rule

Φi1,i2,...,ir =⇒ Φ
′

i1,i2,...,ir = Φj1,j2,...,jrA
j1
i1
. . . Ajr

ir
.

Contravariant components are changed by the rule

Φk1,...,kr =⇒ Φ
′k1,...,kr = Φi1,i2,...,irA

k1

i1
. . . A

kr

ir .
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Changed mixed components (”new”) are a product of ”old” components and the elements of A
for all covariant indices (upper indices) and elements of the matrix A for all contravariant indices
(lower indices), for example:

Φ′i1,i2,...iα
iα+1,...,ir = Φj1,j2,...,jα

jα+1,...,jr
Ai1

j1
. . . Aiα

jα
A

jα+1

iα+1
. . . A

jr

ir .

This rule shows us that if components of a tensor are known in one basis, then they are known in
any basis. It means that tensor is determined by the set of its coordinates in some basis.

This property can be considered as a definition of a tensor.

Definition 1.23. A tensor of order r is a set of nr numbers, which obey to the rule of
changing components as defined above.

Particular cases.
A tensor of zeroth order has only one invariant scalar component and it is usually referred to

a scalar.
A tensor of first order can be considered as a vector. As was proven there is isomorphism

between linear forms over Rn and the vector space Rn.
A tensor of second order has four different types of components. Each of its has nr components.

As it has been proven, there is a one-to-one correspondence between bilinear forms and linear
transformations

Φ < a, b >= a · L < b > .

Therefore there is an isomorphism between second order tensors and linear transformations.

Fundamental tensor

Definition 1.24. A tensor of second order g determined by the fundamental form g 〈a, b〉 = a · b
is called a fundamental tensor.

It is obvious that (gij) = (gij)
−1. Another essential property of the fundamental tensor is its

symmetry
gij = gji, gij = gji.

It can be shown that
ei = gijej, ej = gije

i.

Proof.
Let ei = T ijej, then

gik = g
〈
ei, ek

〉
= ei · ek = T ijej · ek = T ijδk

j = T ik.

Exercise 9. Prove that ej = gije
i.

In the Euclidean space Rn covariant and contravariant components of a tensor are not com-
pletely independent. Each set of covariant components gives raise to a set of contravariant com-
ponents and conversely. In the terminology usually applied in tensor analysis gik, g

ik are used: to
lower and to raise indices, respectively.

For example: (r = 1, vector).
If −→a = aie

i = ajej, then
aie

i = ai(g
ijej) = aig

ijej = ajej.

Hence,
aj = aig

ij ai = akgik.

If r = 3 (third order tensor), then

Φ..k
ij. = Φijsg

ks, Φ..k
ij. = Φpqkgipgjq.
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Raising and lowering indices

The effect of multiplying tensor components by gik (or gik) and summing w.r.t. k is raising (or
lowering) indices.

Exercise 10. Prove that:
(a) T i.

.j = gikTkj, (b) T ij = gikT .j
k. ,

(b) Tij = gikT
k.
.j , (c) Tij = ? T kl.

Exercise 11. Show that the following relations for tensor components are equivalent:
(a) Sij = Sji ⇔ Skl = Slk ⇔ Sm.

.n = S.m
n. ,

(b) aij = −aji ⇔ akl = −alk ⇔ am.
.n = −a.m

n. .

Exercise 12. If T is a second order tensor and Tijv
ivj = 0 for all vectors v, then Tij = −Tji.

1.4.1 Fundamental operations with tensor coordinates

1. Summation. A summation of two or more multilinear forms is a multilinear form. In coordi-
nates, for example, for third order tensors A and B, the coordinates of the sum are

C .mp
q.. = A.mp

q.. +B.mp
q.. .

Converserly, it is easy to prove that a sum of coordinates of two (or more) tensors of the same
type composes a tensor.

2. Subtraction (similar).
3. Outer Multiplication. A product of tensor components A and B is a tensor whose order is

a sum of the order of the given tensors and its coordinates are defined by

A.pr
q..B

m.
.s = C .prm.

q...s

The tensor C is called an outer product of A and B (C is also called a Kronekker product).
Note that not every tensor can be written as a product of two tensors of lower orders.

Contraction

If one contravariant and one covariant indices of tensor components are the same, then it means
summation w.r.t. this index. The result of the summation is a tensor of order on two less than the
original tensor. This process of summation is called a contraction. For example: let Φm

.
p
.
r
.
.
q
.
s be a

tensor of order 5, then we obtain Ψm
.

p
.
.
q = Φm

.
p
.
r
.
.
q
.
r are components of a tensor of third order. Setting

p = q one obtains Cm = Ψm
.

p
.
.
p components of a first order tensor. Coordinateless representation

of the contraction can be given by the following:

Ψ 〈a, b, c〉 = Φ
〈
a, b, ei, c, ei

〉
= Φ

〈
a, b, ei, c, e

i
〉
.

Note that this process does not depend on a basis.

Inner multiplication

By the process of outer multiplication of two tensors followed by a contraction we obtain a new
tensor called an inner product of the given tensors. This process is called an inner multipli-
cation.

For example, for given tensors with components Amp.
..q and Br..

.st the outer product has the
components Amp.

..q B
r..
.st. Letting q = r we get the inner product Amp.

..r B
r..
.st. Letting q = r and

p = s, we obtain another inner product Amp.
..r B

r..
.pt. Inner and outer multiplication of tensors is

commutative and associative.
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Quotient law

Let B be a mathematical or physical quantity, which is represented in a basis {ei} by an order set
of n2 scalars Bij. Assume that if the basis {ei} is changed, then the scalars Bij are changed such
way that for all vectors −→v = vαeα the scalars ui = Bijv

j are components of the vector −→u . Then
B is a second order tensor.

Proof. Let us consider
ui = Bijv

j, (i = 1, . . . , n),

where vj and ui are contravariant and covariant components of vectors. It means that in the new
system of coordinates {e′i} we have

u
′

p = uiA
i
p = Bilv

lAi
p

and
u
′

p = B
′

pkv
′k = B

′

pkA
k

l v
l,

where A and A are transition matrices. Hence,

(BilA
i
p −B

′

pkA
k

l )v
l = 0

for any vector v. Therefore

BilA
i
p −B

′

pkA
k

l = 0

Thus, after multipling on Al
j we get

B
′

pj = BilA
i
pA

l
j.

It means that Bil are covariant tensor components: they are changed according to the law required
for second order tensor components.

The result just proven extends to tensors of higher order and is usually called the quotient
rule: suppose that it is not known whether a quantity X is a tensor or not. If an inner product
of X with an arbitrary tensor is a tensor, then X is also a tensor.

1.4.2 Dyadic Product of two vectors (⊗)

A dyadic product of vectors −→a and
−→
b denoted by −→a ⊗

−→
b is defined as a transformation, which

transforms an arbitrary vector −→c according to the rule:

(−→a ⊗
−→
b ) < c >= −→a (

−→
b , c)

From the definition one obtains that dyad is a linear transformation

a⊗ b < cu+ βv >= ca⊗ b < u > +βa⊗ b < v > .

A pair −→a ⊗
−→
b is called a dyad or direct product of vectors −→a and

−→
b . The tensor, which

corresponds to the dyad is also called a dyad. Because for the dyadic tensor

Φ < c, d >= (c, (a× b) < d >) = (c, a)(b, d),

then coordinates of the dayadic tensor are

Φij = aibj,

where a = aie
i, b = bie

i.

Example 12. Let e be an arbitrary unit vector. We can form the dyad e ⊗ e. The
transformation e⊗ e maps any vector v into its vector projection on e: e(e·v).

The linear transformation P = e ⊗ e corresponds to a second-order tensor that can be called
a projection tensor.
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1.4.3 The permutation symbol

Definition 1.25. The third order tensor given by the formula

ε
〈
a, b, c

〉
= a · (b× c)

is called a permutation tensor.
By means of covariant components εijl and contravariant components εijl of the permutation

tensor we can express the cross product of basis and cobasis vectors:

ei × ej = εijle
l; ei × ej = εijlel.

For any vectors a, b there is
a× b = εijla

jblei = εijlajblei.

According to the properties of triple scalar product all components εijl can be expressed through
one component, for example, ε123 = ε.

A basis {ei} is called right-handed if ε123 = ε > 0 and it is called left-handed if ε123 = ε < 0.
Note that

εijk =


+ε, if (i, j, k) is an even permutation of (1, 2, 3)
−ε, if (i, j, k) is an odd permutation of (1, 2, 3)
0, if two or more indices are equal

Hence,
ε123 = ε231 = ε312 = −ε321 = −ε213 = −ε132.

Example 13. Prove that

[A · (B × C)][a · (b× c)] = det

 A · a A · b A · c
B · a B · b B · c
C · a B · b C · c


Proof.
Let A = Amem; B = Bnen, C = Ckek and {ei} be an orthobasis, then

A · (B × C) = AmemB
nen × Ckek = AmBnCkem · (en × ek) = AmBnCkεmnk.

According to the definition we have

ε123 det

 A1 A2 A3

B1 B2 B3

C1 C2 C3

 = AmBnCkεmnk

[A · (B × C)][a · (b× c)] = det

 A1 A2 A3

B1 B2 B3

C1 C2 C3

 det

 a1 a2 a3

b1 b2 b3

c1 c2 c3

 =

det

 A1 A2 A3

B1 B2 B3

C1 C2 C3

 det

 a1 a2 a3

b1 b2 b3

c1 c2 c3

T

=

det


 A1 A2 A3

B1 B2 B3

C1 C2 C3

 ·
 a1 a2 a3

b1 b2 b3

c1 c2 c3

T
 = det

 A · a A · b A · c
B · a B · b B · c
C · a B · b C · c

 .
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Example 14. ε123 = ε = ±√g, g = det ‖gij‖ .
Proof.

ε123ε123 = [e1 · (e2 × e3)][e1 · (e2 × e3)] = det

 e1 · e1 e1 · e2 e1 · e3
e2 · e1 e2 · e2 e2 · e3
e3 · e1 e3 · e2 e3 · e3

 = det

 g11 g12 g13

g21 g22 g23

g31 g32 g33


The same for ε123 = ± 1√

g
. In fact,

ε123ε123 = [e1 · (e2 × e3)][e1 · (e2 × e3)] = det

 e1 · e1 e1 · e2 e1 · e3
e2 · e1 e2 · e2 e2 · e3
e3 · e1 e3 · e2 e3 · e3

 = det

 g11 g12 g13

g21 g22 g23

g31 g32 g33

 =

det ||gij|| = 1/g, ε123 = ± 1
√
g
.

Example 15. εijkε
prk = δp

i δ
r
j − δr

i δ
p
j .

Let us prove that

εijkε
prq = [ei · (ej × ek)][e

p · (er × eq)] = det

 ei · ep ei · er ei · eq

ej · ep ej · er ej · eq

ek · ep ek · er ek · eq

 = det

 δp
i δr

i δq
i

δp
j δr

j δq
j

δp
k δr

k δq
k


Example 16. Prove that a× (b× c) = b(a · c)− c(a · b).
Proof. Let a = aiei, b = bie

i, c = cie
i, where {ei} and {ei} are basis and cobasis. We suppose

that b× c = d. Then
a× d = εijla

jdlei, d = b× c = εαβγbβcγeα,

dl = d · el = εαβγbβcγeα · el = εαβγbβcγδ
l
α = εlβγbβcγ.

a× (b× c) = εijlε
lβγajbβcγe

i = εijlε
βγlajbβcγe

i =

= (δβ
i δ

γ
j − δγ

i δ
β
j )ajbβcγe

i = δβ
i δ

γ
j a

jbβcγe
i − δγ

i δ
β
j a

jbβcγe
i =

= aγbβcγe
β − aβbβcγe

γ = bβe
βaγcγ − cγe

γaβbβ = b(a · c)− c(a · b).

Exercise 13. Evaluate εijkε
ijk.

Exercise 14. Write (a× b)·(c× d) in component form.

Exercise 15. Prove that A · (B × C) = B · (C × A) = C · (A×B).

Exercise 16. Prove that
(a) A · (B × C) = (A×B) · C;
(b) A · (A× C) = 0.

1.5 Tensor calculus

Let Ω ⊂ Rn be open set in Rn. A tensor field is a function over Ω that associates any point of Ω
a tensor. In this section we study an elementary calculus of tensor and vector fields.

Definition 1.26. A transformation u : Ω −→ Rm is continuous at the point x ∈ Ω if

lim
|h|Rn→0

|u(x+ h)− u(x)|Rm = 0

Definition 1.27. A transformation u : Ω → Rm is continuous on the set Ω if u is continuous
at any point x ∈ Ω.
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Differentiation

Let u : Ω → Rm be continuous on Ω.

Definition 1.28. A transformation u is called differentiable at the point x ∈ Ω if there exists
a linear transformation L : Rn → Rm such that

lim
|h|→0

∣∣h−1
∣∣ |u(x+ h)− u(x)− L 〈h〉| = 0

Definition 1.29. A transformation u is called differentiable on Ω, if it is differentiable at
any point x ∈ Ω.

Definition 1.30. A linear mapping L, defined above is called a derivative of the transfor-

mation u at the point x and it is denoted by
∂u

∂x
(x).

Definition 1.31. A new transformation
∂u

∂x
: Ω → L (Rn;Rm) given by the formula x→ ∂u

∂x
〈x〉

is called a derivative transformation of u.
A transformation u is called continuously differentiable on Ω if the derivative transforma-

tion
∂u

∂x
is continuous on Ω. Here the symbol

∂u

∂x
is used only as notation for the ”new” linear

transformation
∂u

∂x
: Rn → L(Rn, Rm) or

∂u

∂x
∈ L (Rn;Rm)

If u : Rn → Rm and v : Rm → Rp are differentiable, then their composition v ◦ u : Rn → Rp is
also differentiable. And we have

∂

∂x
(v ◦ u) =

∂v

∂x
◦ ∂u
∂x

The case n = 1.
In this case u : R(t) → Rm is usually called a vector–function of the variable t. If u = ujfj,

and {fj}m
1 ⊂ Rm is a basis then ∂u

∂t
= ∂uj

∂t
fj.

General case can be reduced to this simple one. Let u : Ω → Rm be a differentiable vector field
with Ω ⊂ Rn. One can consider the new transformation v : R(t) → Rm, where v(t) = u(x + ta)
and a ∈ Rn is an arbitrary vector (this vector is called a test vector). We have

∂u

∂x
(x) 〈a〉 = lim

t→0

u(x+ ta)− u(x)

t
= lim

t→0

v(t)− v(0)

t
=
∂v

∂x
(0).

Problems.

1. Expand
d

dt
[u(t)× v(t) · w(t)].

Solution.
du

dt
× v(t) · w(t) + u(t)× dv

dt
· w(t) + u(t)× v(t) · dw

dt
.

2. Show that if e(t) has a constant magnitude, then
de

dt
is either zero or perpendicular to e.

Solution

e · e =
∣∣e2∣∣ = const,

de · e
dt

= 2e · de
dt

= 0.

3. Let u = sin te1 + ete2 + e3. Find
du

dt
.

Solution.
du

dt
= cos t e1 + et e2.
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Let m = 1. A transformation ϕ : Rn → R (m = 1) is simply a scalar function. We use a
special symbol for the derivative transformation (derivative transformation is a linear form)

∂ϕ

∂x
= ∇ϕ

The transformation ∇ϕ is called a gradient of ϕ. The operator ∇ is also known as a NABLA or
del operator. The del operator ∇ represents a linear function that maps a tensor field into another
tensor field. For instance, the gradient of scalar function f(x1, x2) maps a scalar field into a vector
field ∇f(x1, x2).

For the linear form ∇ϕ there exists an unique vector b such that

∇ϕ < a >= a · b.

The vector b is also denoted by ∇ϕ.

1.5.1 A coordinate representation

Let m = 1. If {ei} is a basis in Rn, and x = xiei, then

∇ϕ < ei >= lim
t→0

ϕ(x+ tei)− ϕ(x)

t
=
∂ϕ

∂xi
.

Therefore, the vector b is b = ∂ϕ
∂xi ei, or

b = (
∂ϕ

∂x1
,
∂ϕ

∂x2
, · · · , ∂ϕ

∂xn
).

Let n = 1. If {fj} is a basis in Rm, then u = ujfj. The derivative is calculated by component–
wise

∂u

∂x
= lim

t→0

uj(x+ t)− uj(x)

t
fj =

∂uj

∂x
fj.

In the general case x = xiei, u = ujfj the matrix of linear transformation (
∂u

∂x
) has the

representation

(
∂u

∂x
) = (

∂uj

∂xi
),

where
∂uj

∂xi
are usual partial derivatives of the function uj(x1, . . . , xn). The matrix

(
∂uj

∂xi

)
is

called the Jacobi matrix of the transformation u. A transformation u : Ω → Rm is continuously
differentiable on Ω iff all partial derivatives ∂uj/∂xi exist and they are continuous functions on
the set Ω.

Example 17. A directional derivative of f in the direction e is

df

ds
= e · ∇f.

Example 18. One can use the gradient to derive the equations of the normal line and
tangent plane to a surface f(x) = const at the point (a1, a2, a3). If r is a point on the normal line,
then ∇f is parallel to the normal:

r − a = t · ∇f
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or in coordinate form

xi − ai = t
∂f

∂xi

.

If r is a point on the tangent plane, then ∇f is perpendicular to the plane

(r − a) · ∇f = 0,

or

(xi − ai)
∂f

∂xi

(a1, a2, a3) = 0.

Exercise 17. Find an equation of the normal line and tangent plane to the surface x3 =
1 + x1x2 at the point (1, 1, 2).

Exercise 18. Find equations of straight lines normal and tangent to the curve f(x1, x2) =
const at the point (a1, a2).

In the case m = n a linear transformation
∂u

∂x
belongs to L(Rn). A matrix representation of

this transformation is a square n × n matrix. Two invariants of this linear transformation have
special names.

The trace tr(
∂u

∂x
) is called a divergence. The determinant det(

∂u

∂x
) is called the Jacobian of

the transformation u. Thus,

div u = tr(
∂u

∂x
) =

∂ui

∂xi
,

∣∣∣∣∂u∂x
∣∣∣∣ = det(

∂u

∂x
) =

∣∣∣∣∂uj

∂xi

∣∣∣∣ .
1.5.2 Divergence of a tensor

In continuum mechanics we will use a new vector operation, it is named a divergence of a tensor.
Let P : Ω → L(Rn) be a differentiable transformation and a ∈ Rn be an arbitrary test vector

and x ∈ Ω. We can determine a transformation ua(x) : Rn → Rn by

ua(x) = P ∗(x) 〈a〉 .

This is a differentiable function. We construct the divergence of this transformation (as above)

div(ua(x)) = tr(
∂ua

∂x
) = tr(

∂

∂x
P ∗(x) 〈a〉)

In the left hand side we have a scalar in the right hand side we have a linear form. There is an
unique vector p such that

tr(
∂

∂x
P ∗(x) 〈a〉) = a · p.

The vector p is called a divergence of the tensor P and it is denoted by p = div P .

Example 19. Let

P (x, y) =

[
x xy
y x2

]
,

be a matrix representation of a linear transformation P in the basis e1 = (1, 0), e2 = (0, 1). Find
div P .

Solution. Note that

div P = (div P )i · ei = ((div P )1, (div P )2).
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Because {e1, e2} is an orthonormal basis

P ∗(x, y) = P T =

[
x y
xy x2

]
.

Hence,

P ∗(x, y) 〈e1〉 =

[
x y
xy x2

] [
1
0

]
=

[
x
xy

]
.

Therefore,

P ∗(x, y) 〈e2〉 =

[
x y
xy x2

] [
0
1

]
=

[
y
x2

]
,

(div P )1 = div(P ∗(x) 〈e1〉) =
∂

∂x
x+

∂

∂y
xy = 1 + x,

(div P )2 = div (P ∗(x) 〈e2〉) =
∂

∂x
y +

∂

∂y
x2 = 0.

For the case m = n = 3 a rotor (or curl) of a vector field u is defined by the formula

rot u = E−1

〈
∂u

∂x
− (

∂u

∂x
)∗
〉
.

Hence, a coordinate representation of the curl in an orthonormal basis is defined by:

(
∂u

∂x
− (

∂u

∂x
)∗) =

 u1
,x1

u1
,x2

u1
,x3

u2
,x1

u2
,x2

u2
,x3

u3
,x1

u3
,x2

u3
,x3

−
 u1

,x1
u2

,x1
u3

,x1

u1
,x2

u2
,x2

u3
,x2

u1
,x3

u2
,x3

u3
,x3

 =

=

 0 (u1
x2
− u2

x1
) (u1

x3
− u3

x1
)

(u2
x1
− u1

x2
) 0 (u2

x3
− u3

x2
)

(u3
x1
− u1

x3
) (u3

x2
− u2

x3
) 0

 .
We remind that in an orthonormal basis

a = E−1 〈Aa〉 = E−1

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 =

 a1

a2

a3

 .
Thus,

rot u = E−1

〈
∂u

∂x
−
(
∂u

∂x

)∗〉
=

(
∂u3

∂x2

− ∂u2

∂x3

,
∂u1

∂x3

− ∂u3

∂x1

,
∂u2

∂x1

− ∂u1

∂x2

)
or another representation is

∇× u =

(
∂

∂x
i+

∂

∂y
j +

∂

∂z
k

)
×
(
u1i+ u2j + u3k

)
= det

 i j k
∂
∂x

∂
∂y

∂
∂z

u1 u2 u3

 =

(
∂u3

∂y
− ∂u2

∂z

)
i+

(
∂u1

∂z
− ∂u3

∂y

)
j +

(
∂u2

∂x
− ∂u1

∂y

)
k
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1.5.3 Second derivative

If derivative transformation
∂u

∂x
: Ω → L(Rn;Rm) is differentiable, then the function u is called

twice differentiable. The derivative transformation ∂
∂x

(
∂u
∂x

)
is called a second derivative or deriva-

tive transformation of second order. We use a notation ∂2u
∂x2 . A value of second derivative at the

point x is called a second derivative of mapping u at a point x. A second derivative of mapping
is a bilinear transformation from Rn×Rn into Rm. The bilinear mapping ∂2u

∂x2 : Rn×Rn → Rm is
defined by the formula of successive differentiating

∂2u

∂x2
〈a, b〉 =

∂

∂x
(
∂u

∂x
〈b〉) 〈a〉

Note that if a function u is twice continuously differentiable, then the second derivative is sym-
metric

∂2u

∂x2
〈a, b〉 =

∂2u

∂x2
〈b, a〉

1.5.4 High order derivatives

High order derivatives can be defined by the induction

∂ku

∂xk
=

∂

∂x
(
∂k−1u

∂xk−1
).

A derivative ∂ku
∂xk at a point x ∈ Ω of a k-times continuously differentiable mapping is a sym-

metric k–linear transformation Rn ×Rn × · · · ×Rn︸ ︷︷ ︸
k

→ Rm. In the general case one can write

down
∂p

∂xp

(
∂qu

∂xq
〈b1, . . . , bq〉

)
〈a1, . . . , ap〉 =

∂p+qu

∂xp+q
〈a1, . . . , ap, b1, . . . , bq〉 .

1.6 Curvilinear coordinate systems

1.6.1 Coordinate system

For the sake of simplicity we consider here coordinates in three–dimensional Euclidean space R3.
All facts and definitions are valid in arbitrary space Rn.

A set of triples (K1, K2, K3) , where K1, K2, K3 are real numbers, is called an arithmetic
space A3. For all elements of A3 the operations of summation, subtraction and multiplication by
a scalar, and dot product are defined by usual way. For example,

(K1, K2, K3) · (L1, L2, L3) = K1L1 +K2L2 +K3L3.

This space of triples is an Euclidean space.
Let Ω ⊂ R3(x) be an open set. A one–to–one and reciprocal continuously differentiable

mapping K : Ω → A3 is called a coordinate system. This mapping is defined by the formula

x→ K(x) = (K1(x), K2(x), K3(x))

The values of functions Ki(x) are called coordinates (curvilinear coordinates) of the point x.
For any fixed point x0 the equation Ki(x) = Ki(x0) determines a coordinate surface Πi ⊂

R3(x). This coordinate surface passes through the point x0.
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Any pair Πi,Πj of these surfaces is intersected along the curves

l1 = Π2 ∩ Π3, l2 = Π3 ∩ Π1 l3 = Π1 ∩ Π2,

which are called coordinate curves (or curvilinear axes of coordinates). Along the li–line only the
coordinate Ki is changed; two other coordinates are constants.

1.6.2 Coordinate basis

Let a point x ∈ Ω be fixed. At this point there are three vectors

ei =
∂x

∂Ki
, (i = 1, 2, 3),

which form a basis in R3. This basis is called a coordinate basis of the coordinate system K at
the point x. A vector ei is a tangent vector to the coordinate line li.

Similarly, one can define other three vectors at the same point x ∈ Ω

ei =
∂Ki

∂x
= ∇Ki, (i = 1, 2, 3).

These vectors form a cobasis that corresponds to the basis {ei}. The basis {ei} is called a
coordinate cobasis of the coordinate system K at the point x. The vectors ei are normal to the
coordinate surfaces Πi. If K

′
: Ω → A3 is a ”new” coordinate system, then the trasformation

K
′ ◦K−1 : A3 → A3 is defined. This transformation acts by the rule

(K1, K2, K3) → (K
′1, K

′2, K
′3) = (K

′ ◦K−1)(K1, K2, K3)

and an inverse mapping K ◦ (K
′
)−1 is determined, too. Then, ”new” basis and cobasis are related

with ”old” bases by usual formulae

e
′

i = Aj
iej; e

′i = A
i

je
j,

where

Aj
i =

∂Kj

∂K ′i
; A

i

j =
∂K

′i

∂Kj
; (i, j = 1, 2, 3)

1.6.3 Orthogonal coordinate systems

A coordinate system is called orthogonal (at a point or on a set) if its basis is orthogonal

ei · ej = 0, ei · ej = 0, (i 6= j)

(at the point or on the set). Coordinates of the fundamental tensor g with respect to an orthogonal
coordinate system are

(gij) =

 h1 0 0
0 h2 0
0 0 h3

 ,
where

hi = gii = |ei|2 =

∣∣∣∣ ∂x∂Ki

∣∣∣∣2 , i = 1, 2, 3.
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1.6.4 Christoffel’s symbols

Vectors of a coordinate basis {ei} depend on x or on (K1, K2, K3) = K(x). Derivatives of the
basis vectors can be represented in terms of the basis {ei}

∂ei

∂Kj
= Γs

ijes,

where the coefficients Γs
ij are called Christoffel’s symbols of second order. Note that the Christof-

fel’s symbols are not components of any tensor. These symbols are symmetric with respect to
lower indices

Γs
ij = Γs

ji.

A dual formula for the representation of the Christoffel symbols is

∂ei

∂Kj
= −Γi

jse
s.

The Christoffel symbols are related to the derivatives of the fundamental tensor

Γl
ij =

1

2

(
∂gis

∂Kj
+
∂gjs

∂Ki
− ∂gij

∂Ks

)
gls.

Let us prove these identities. In the strength of the identities

gij = ei · ej, gis = ei · es, gjs = ej · es,

∂gij

∂Ks
=

∂ei

∂Ks
· ej + ei ·

∂ej

∂Ks
= Γp

isep · ej + ei · Γp
jsep

one can obtain
∂gis

∂Kj
=

∂ei

∂Kj
· es + ei ·

∂es

∂Kj
= Γp

ijep · es + ei · Γp
sjep,

∂gjs

∂Ki
=

∂ej

∂Ki
· es + ej ·

∂es

∂Ki
= Γp

jiep · es + ej · Γp
siep.

Hence,

∂gis

∂Kj
+
∂gjs

∂Ki
− ∂gij

∂Ks
= Γp

ijep · es + ei · Γp
sjep + Γp

jiep · es + ej · Γp
siep − Γp

isep · ej − ei · Γp
jsep =

= 2Γp
jiep · es = 2Γp

jigps.

Thus, after multiplying on gsl one has the proof.

Note that

Γs
is =

1√
|g|
∂
√
|g|

∂Ki
, (i = 1, 2, 3),

where |g| = det(gij). This follows from |g| = [e1 · (e2 × e3)]
2 and

∂|g|
∂Ki

= 2[e1 · (e2 × e3)][
∂e1
∂Ki

· (e2 × e3) + e1 · (
∂e2
∂Ki

× e3) + e1 · (e2 ×
∂e3
∂Ki

)] =

= 2ε2
123(Γ

1
1i + Γ2

2i + Γ3
3i).
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1.6.5 Derivative tensor

Let Φ be a tensor of order r, which is dependent on x ∈ Ω ⊂ R3 and a1, a2, . . . , ar be a set of test
vectors. Hence, there is the function Φ 〈a1, a2, . . . , ar〉 : Ω → R defined by the formula

x→ Φ(x) 〈a1, a2, . . . , ar〉 .

The derivative of this map is a linear transformation. This means that

Φ
′ 〈
a1, a2, . . . , ar, b

〉
=

∂

∂x
(Φ(x) 〈a1, a2, . . . , ar〉)

〈
b
〉

is a (r + 1)-linear form.
Therefore, Φ′ is a tensor of (r + 1) order. The tensor Φ′ is called a derivative tensor of the

tensor Φ. Coordinates of the tensor Φ
′ 〈
a1, a2, . . . , ar, b

〉
which correspond to basis vectors b = ei

are called covariant derivatives of the components of the tensor Φ. We use the notation

Φ
′

i1...irl = Φi1...ir,l.

Here a one covariant index, which is written after the comma, is added.

1.6.6 Covariant derivative

Covariant derivatives are expressed in terms of partial derivatives with respect to correspond-
ing coordinates, Christoffel’s symbols and components of a tensor. The simplest are covariant
derivatives of a scalar, which coincide with usual partial derivatives

Φ,i =
∂Φ

∂Ki
.

Let us consider first a tensor field of first order. Taking the derivative one has

∂

∂K l
Φi(x) =

∂

∂K l
(Φ(x) < ei >) = Φ′(x) < ei,

∂x

∂K l
> +Φ(x) <

∂ei

∂K l
>=

= Φ′(x) < ei, el > +Φ(x) < Γs
iles >= (Φ′(x))il + Γs

il(Φ(x))s =
= (Φ′)i,l(x) + Γs

ilΦs(x).

Thus,

Φi,l = (Φ′)i,l =
∂

∂K l
Φi − Γs

ilΦs.

Similar for contravariant coordinates of a vector

∂

∂K l
Φi(x) =

∂

∂K l

(
Φ(x) < ei >

)
= Φ′(x) < ei,

∂x

∂K l
> +Φ(x) <

∂ei

∂K l
>=

= Φ′(x) < ei, el > +Φ(x) < −Γi
sle

s >= (Φ′(x))i.
.l − Γi

sl(Φ(x))s =
= (Φ′)i

,l(x)− Γi
slΦ

s(x)

or

Φi
.,l = (Φ′)i

,l =
∂

∂K l
Φi + Γi

slΦ
s.

For a second order tensor

Φij,l =
∂Φij

∂K l
− Γs

liΦsj − Γs
ljΦis, Φij

,l =
∂Φij

∂K l
+ Γi

lsΦ
sj + Γj

lsΦ
is,
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Φ.j
i.,l =

∂Φ.j
i.

∂K l
− Γs

liΦ
.j
s. + Γj

lsΦ
.s
i. , Φj.

.i,l =
∂Φj.

.i

∂K l
− Γs

liΦ
j.
.s + Γj

lsΦ
s.
.i ,

In the general case for covariant derivatives of a tensor Φ of order r one obtains

Φi1...ir,l =
∂Φi1...ir

∂K l
−

r∑
σ=1

Γs
liσΦi1...s...ir ,

where the index s is placed instead of the index iσ. Similarly, for coordinates Φj1...jr
...... ,l = Φ′ <

ej1 , ..., ejr , el >

Φj1...jr
...... ,l =

∂Φj1...jr

∂K l
+

r∑
σ=1

Γjσ

ls Φj1...s...jr ,

where the index s is placed instead of the index jσ.
Covariant differentiation of sum and products of tensor components are got by usual laws of

differentiation of product and summation.
Special interest of covariant derivatives is the covariant derivatives of the fundamental tensor

gij,l = gij
..,l = 0.

This results are known as Ricci’s lemma. A practical importance of this lies in the fact that the
metric tensor acts as a constant when the operation of covariant differentiation is applied to it.
Therefore, it can be moved freely in covariant differentiation. This property gives us a simple way
to calculate covariant derivatives of mixed and contravariant components of an arbitrary tensor,
if we know all covariant derivatives of covariant components of this tensor.

Proof (Ricci’s lemma).
The proof is obtained from the following calculations

gij,l =
∂gij

∂K l
− Γs

ligsj − Γs
ljgis =

∂gij

∂K l
− 1

2
gsm

(
∂glm

∂Ki
+
∂gim

∂K l
− ∂gli

∂Km

)
gsj −

1

2
gsm

(
∂glm

∂Kj
+
∂gjm

∂K l
− ∂glj

∂Km

)
gis =

=
∂gij

∂K l
− 1

2
δm
j

(
∂glm

∂Ki
+
∂gim

∂K l
− ∂gli

∂Km

)
− 1

2
δm
i

(
∂glm

∂Kj
+
∂gjm

∂K l
− ∂glj

∂Km

)
=

=
∂gij

∂K l
− 1

2

(
∂glj

∂Ki
+
∂gij

∂K l
− ∂gli

∂Kj

)
− 1

2

(
∂gli

∂Kj
+
∂gji

∂K l
− ∂glj

∂Ki

)
= 0.

Let us consider some properties of covariant derivatives.
(a) Derivative of a vector:

∂Φ

∂Kj
=
∂(Φie

i)

∂Kj
=

∂Φi

∂Kj
ei + Φi

∂ei

∂Kj
=

∂Φi

∂Kj
ei + Φi(−1)Γi

jse
s =(

∂Φi

∂Kj − Γi
jsΦs

)
ei = Φi,je

i.

(b) Covariant derivative of a scalar product has the same form as usual partial derivative. In
fact, let B = ΦiΨi be a scalar product of two differentiable vectors Φ and Ψ:

B,j =
∂B

∂Kj
=
∂(ΦiΨi)

∂Kj
=

∂Φi

∂Kj
Ψi + Φi ∂Ψi

∂Kj
=

∂Φi

∂Kj
Ψi + Φi(Ψi,j + Γs

jiΨs) =

= (
∂Φi

∂Kj
+ Γi

sjΦ
s)Ψi + ΦiΨi,j = ΦiΨi,j + Φi

,jΨi.
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Here we used

Φi
,j =

∂Φi

∂Kj
+ Γi

jsΦ
s, Ψi,j =

∂Ψi

∂Kj
− Γs

ijΨs

Therefore,

B,j =
∂B

∂Kj
= ΦiΨi,j + Φi

,jΨi.

1.6.7 Differential Operators

In this section we study some differential operators that are expressed in terms of covariant deriva-
tives. We use these formulae for covariant representation of differential equations of continuum
mechanics.

Gradient of a function

Definition 1.32. The vector

∇F =
∂F

∂x
=

∂F

∂Ki
ei

is called a gradient of the function F . Covariant components of the gradient are:

(∇F )i = F,i =
∂F

∂Ki
.

Derivative of a vector

Let v be a vector. A derivative of the vector v is a linear transformation
∂v

∂x
∈L(Rn). This linear

transformation corresponds to the second order tensor, which is denoted by the same symbol:

∂v

∂x

〈
a, b

〉
= a · ∂v

∂x

〈
b
〉

Covariant coordinates of the
∂v

∂x
are(

∂v

∂x

)
ij

= ei

(
∂v

∂x

)
< ej >= ei(lim

t→0

v(x+ tej)− v(x)

t
) = ei

∂v

∂Kj
=

∂vi

∂Kj
− Γs

ijvs = vi,j.

Divergence of a vector

First we remind definition of trace of linear operator L, tr(L), where L ∈ L(Rn). If {ei} is a basis
in Rn then tr(L) = Li

i, where Lj
i = ej · L < ei > and L < ei >= Lj

iej. Note that tr(L) is a
contraction of the tensor corresponding to the linear transformation L.

The divergence of a vector v is a scalar

div v = tr

(
∂v

∂x

)
= ei(

∂v

∂x
) < ei > .

The divergence of a vector v can be expressed in terms of covariant derivatives of the vector v

div v = vi
,i =

∂vi

∂Ki
+ Γi

isv
s =

∂vi

∂Ki
+

vi√
|g|
∂
√
|g|

∂Ki
=

1√
|g|

∂

∂Ki

(√
|g|vi

)
.
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The Laplace operator of a function

The scalar

4F = div (∇F ) = ((∇F )i),i = (gis(∇F )s),i =

=

(
gis ∂F

∂Ks

)
,i

= gis(
∂F

∂Ks
),i = gis[

∂2F

∂Ks∂Ki
− Γα

is

∂F

∂Kα
]

is called the Laplace operator of the function F .

If one denotes v = ∇F , then vi = gis ∂F

∂Ks
, therefore

4F =
1√
|g|

∂

∂Ki

(√
|g|gis ∂F

∂Ks

)

Curl of a vector

A Curl (or rotor) of a vector v is the vector

curl v = E−1

〈(
∂v

∂x

)
−
(
∂v

∂x

)∗〉
For obtaining contravariant components of this vector note that

E < curl v >=
∂v

∂x
−
(
∂v

∂x

)∗
.

Then

ej((E < curl v >) < es >) = ej((curl v)
lel × es) = εjls(curl v)

l

and

ej((E < curl v >) < es >) = (
∂v

∂x
)js − (

∂v

∂x
)sj =

∂vj

∂Ks
− ∂vs

∂Kj
.

Hence,

ε123 (curl v)1 =
∂v3

∂K2
− ∂v2

∂K3
, ε123 (curl v)2 =

∂v1

∂K3
− ∂v3

∂K1
,

ε123 (curl v)3 =
∂v2

∂K1
− ∂v1

∂K2
.

If one uses a right-handed basis, then ε123 =
√
|g| and

(curl v)1 =
1√
|g|

(
∂v3

∂K2
− ∂v2

∂K3

)
, (curl v)2 =

1√
|g|

(
∂v1

∂K3
− ∂v3

∂K1

)
,

(curl v)3 =
1√
|g|

(
∂v2

∂K1
− ∂v1

∂K2

)
.
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Divergence of a tensor

Let a be a test vector, then

a · div P = div (P ∗ 〈a〉) = tr

(
∂

∂x
P ∗ 〈a〉

)
= (P ∗ 〈a〉)j

,j =
∂(P ∗ < a >)j

∂Kj
+ Γj

jα(P ∗ < a >)α.

Because (P ∗ < a >)j = ejP ∗ < a >= aP < ej >, and P < ej >= P sjes, then

a · div P = a

(
∂P sj

∂Kj
es + P sj ∂es

∂Kj
+ Γj

jαP
sαes

)
=

(a · es)
(

∂P sj

∂Kj + Γj
jαP

sα + Γs
αjP

αj
)

= (a · es)P
sj
,j

or

as(div P )s = asP
sj
,j .

This means that

(div P )s = P sj
,j .

Another representation is the following

(div P )s = P sj,j = div (P
s
) + Γs

jαP
jα,

where P
s
= (P s1, P s2, P s3) and

div (P
s
) =

∂P sj

∂Kj
+ Γj

jαP
sα.

The Laplace operator of a vector

The vector

4v = div

(
∂v

∂x

)
is called the Laplace operator of the vector v.

Contravariant components of this vector are

(4v)l =

(
∂v

∂x

)li

,i

= gij

((
∂v

∂x

)l.

.j

)
,i

= gij(vl
,i),j = gij[

∂vl
,i

∂Kj
− Γs

jiv
l
,s + Γl

jsv
s
,i] =

= gij[(
∂2vl

∂Kj∂Ki
+
∂Γl

is

∂Kj
vs + Γl

is

∂vs

∂Kj
)− Γs

ji(
∂vl

∂Ks
+ Γl

sαv
α) + Γl

js(
∂vs

∂Ki
+ Γs

iαv
α)].

After regrouping one has

gij(
∂2vl

∂Kj∂Ki
− Γs

ji

∂vl

∂Ks
) + gij(

∂Γl
is

∂Kj
− Γα

jiΓ
l
αs + Γl

jαΓα
is)v

s + 2gijΓl
is

∂vs

∂Kj
=

= gij(4vl) + 2gijΓl
is

∂vs

∂Kj
+ gij(

∂Γl
is

∂Kj
− Γα

jiΓ
l
αs + Γl

jαΓα
is)v

s.
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Acceleration

The vector
dv

dt
=
∂v

∂t
+
∂v

∂x
〈v〉

is called an acceleration of v.
Covariant and contravariant components of the acceleration are(

dv

dt

)
i

=
∂vi

∂t
+ vsvi,s =

∂vi

∂t
+ vs ∂vi

∂Ks
− Γj

isv
svj,

(
dv

dt

)i

=
∂vi

∂t
+ vsvi

.,s =
∂vi

∂t
+ vs ∂v

i

∂Ks
+ Γi

jsv
jvs,

Physical Components of Tensors

If vectors of coordinate bases and cobases are not normed, then components of tensors have
different numerical values in different bases even if directions of basis vectors coincides. For using
specific physical values it is inconvenient. To correct this there are physical components of tensors.

Definition 1.33. Numerical values of tensor components divided by the length of corre-
sponding basis or cobasis vectors, which define these components are called physical components of
the tensor.

Let us consider curlinear coordinate system

ei =
∂x

∂Ki
, ei =

∂Ki

∂x
= ∇Ki.

The lengths of the basis and cobasis vectors are

|ei|2 = ei · ei = gii, |ei|2 = ei · ei = gii.

The vectors e1i =
ei

|ei|
have the unite length. If ai = aei are covariant coordinates of a vector a,

then the physical components are

ãi =
ai

|ei|
For covariant components of a tensor one has

Lij = L 〈ei, ej〉 = |ei||ej|L
〈
e1i , e

1
j

〉
= |ei||ej|L̃ij

or

L̃ij =
Lij

(|ei| |ej|)
In orthonormal system of coordinates for any tensor its physical components of all types,

having the same indices, are equal.

1.7 Special Coordinate Systems

Let {ei} be a fixed right-handed orthonormal basis in R3. We suppose that a point (vector) x has
components x = (x, y, z) in this basis. Curvilinear coordinates are introduced by transformation
K : R3 → A3, which acts according to the formulae

K(x) = (K1(x, y, z), K2(x, y, z), K3(x, y, z)).
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1.7.1 Rectangular Cartesian Coordinates

Let us consider a transformation K:

K1 = x, K2 = y, K3 = z.

The inverse transformation K−1 is

x = K1, y = K2, z = K3.

The coordinate surfaces x = const, y = const or z = const are planes, which are parallel to
yz plane, zx plane or xy plane, respectively. The coordinate curves are straight lines, which are
parallel to the x–axis, y–axis or z–axis, respectively. They are orthogonal. The basis ei = ∂x

∂Ki

coincides with the cobasis ei = ∂Ki

∂x
:

e1 = e1, e2 = e2, e3 = e3.

The fundamental tensor is an identical tensor

(gij) =

 1 0 0
0 1 0
0 0 1

 = (gij); |g| = 1.

All Christoffel’s symbols are equal to zero. The permutational tensor has the value ε = 1. The
coordinate system x, y, z is a right-handle coordinate system. Physical components of a vector
v = (vx, vy, vz) coincide with tensor components

(v1, v2, v3) = (vx, vy, vz) = (v1, v2, v3).

Physical components of a second order tensor P coincide with corresponding tensor components:

(P ) =

 Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz

 = (Pij) = (P ij).

The gradient of a function F is

∇F =

(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
.

The matrix of covariant derivatives of a vector v is (i is a number of row)

(vi
,j) =

(
∂vi

∂xj

)
=


∂vx

∂x
∂vx

∂y
∂vx

∂z
∂vy

∂x

∂vy

∂y

∂vy

∂z
∂vz

∂x
∂vz

∂y
∂vz

∂z

 .
The divergence of a vector v is

div v =
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
.

The Laplace operator of a function F is

4F =
∂2F

∂x2
+
∂2F

∂y2
+
∂2F

∂z2
.
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The rotor ω of a vector v (ω = rot v) has components

ω1 =
∂vz

∂y
− ∂vy

∂z
, ω2 =

∂vx

∂z
− ∂vz

∂x
, ω3 =

∂vy

∂x
− ∂vx

∂y
.

The divergence of a tensor P is

(div P )i = div (P
i
),

P
1

= (Pxx, Pxy, Pxz),

P
2

= (Pyx, Pyy, Pyz),

P
3

= (Pzx, Pzy, Pzz).

The Laplace operator of a vector v is

(4v)1 = 4(vx), (4v)2 = 4(vy), (4v)3 = 4(vz).

The acceleration is (
dv

dt

)1

= D(vx),

(
dv

dt

)2

= D(vy),

(
dv

dt

)3

= D(vz),

where

D(f) =
∂f

∂t
+ vx

∂f

∂x
+ vy

∂f

∂y
+ vz

∂f

∂z
.

1.7.2 The cylindrical coordinate system

For the cylindrical coordinate system the transformation K is

K1 = r =
√
x2 + y2, K2 = ϕ = arctan

y

x
, K3 = z.

The inverse mapping K−1 is

x = r cosϕ, y = r sinϕ, z = z, (0 ≤ ϕ ≤ 2π).

Coordinate surfaces r = const > 0 are circular cylinders (coaxial to z–axis); ϕ = const are half-
planes passing through z–axis and z = const are planes perpendicular to z–axis. Coordinate
curves are: l1 (intersection of ϕ = const and z = const) are straight rays going from z–axis and
perpendicular to it; l2 (intersection of r = const and z = const) are circles (these circles lie on the
planes, which are perpendicular to z–axis with a center in the z–axis); l3 (intersection of r = const
and ϕ = const) are straight lines that are parallel to z–axis.

The basis and cobasis of the cylindrical coordinate system are orthogonal and consist of the
vectors

e1 =
∂x

∂K1
=

(
∂x

∂r
,
∂y

∂r
,
∂z

∂r

)
= (cos ϕ, sin ϕ, 0),

e2 =
∂x

∂K2
=

(
∂x

∂ϕ
,
∂y

∂ϕ
,
∂z

∂ϕ

)
= r (− sin ϕ, cosϕ, 0),

e3 =
∂x

∂K3
=

(
∂x

∂z
,
∂y

∂z
,
∂z

∂z

)
= (0, 0, 1),

e1 = (
∂K1

∂x
,
∂K1

∂y
,
∂K1

∂z
) = (

x√
x2 + y2

,
y√

x2 + y2
, 0) = (cos ϕ, sin ϕ, 0),
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e2 = (
∂K2

∂x
,
∂K2

∂y
,
∂K2

∂z
) = (− y

x2 + y2
,

x

x2 + y2
, 0) =

1

r
(− sin ϕ, cos ϕ, 0),

e3 = (
∂K3

∂x
,
∂K3

∂y
,
∂K3

∂z
) = (0, 0, 1).

Hence,

e1 = (cosϕ, sin ϕ, 0), e2 = r (− sin ϕ, cos ϕ, 0), e3 = (0, 0, 1),

e1 = (cos ϕ, sin ϕ, 0), e2 =
1

r
(− sin ϕ, cos ϕ, 0), e3 = (0, 0, 1).

The fundamental tensor is

(gij) =

 1 0 0
0 r2 0
0 0 1

 , (gij) =

 1 0 0
0 1

r2 0
0 0 1

 , |g| = r2.

Because the Christoffel’s symbols are

Γl
ij =

1

2
gls

(
∂gis

∂Kj
+
∂gjs

∂Ki
− ∂gij

∂Ks

)
,

then for the cylindrical coordinate system

Γ2
12 = Γ2

21 =
1

r
, Γ1

22 = −r

and all others are equal to zero. For example,

Γ2
12 =

1

2
g2s

(
∂g1s

∂K2
+
∂g2s

∂K1
− ∂g12

∂Ks

)
=

1

2
g22

(
∂g12

∂K2
+
∂g22

∂K1
− ∂g12

∂K2

)
=

1

2

1

r2
2r =

1

r
.

For the permutation tensor is ε123 = r with

ε123 = ε231 = ε312 = −ε321 = −ε213 = −ε132.

Since cylindrical coordinate system is orthogonal, then all physical components of any type
concide. Let (vr, vϕ, vz) be physical components of a vector v, then the tensor components of the
vector v are

(v1, v2, v3) = (vr,
vϕ

r
, vz), (v1, v2, v3) = (vr, rvϕ, vz)

We remind that physical components of a vector are related with covariant components by the
formulae:

ṽ2 =
v2

|e2|
=
v2

r
, v2 = rṽ2 = rvϕ.

Let P ij = P
〈
ei, ej

〉
are contravariant components of a second order tensor P . The physical

components P̃ ij are

P̃ ij =
P ij(∣∣ei
∣∣ ∣∣ej

∣∣) .
For the cylindrical coordinate system, for example,

P̃ 21 =
P 21

(|e2| |e1|)
= r P 21, P 21 =

1

r
P̃ 21 =

1

r
Pϕr.
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Hence, if the physical components of a tensor P are

(P ) =

 Prr Prϕ Prz

Pϕr Pϕϕ Pϕz

Pzr Pzϕ Pzz

 ,
then contravariant componets of the tensor P are

(P ij) =

 Prr
1
r
Prϕ Prz

1
r
Pϕr

1
r2Pϕϕ

1
r
Pϕz

Pzr
1
r
Pzϕ Pzz

 .
The coordinates of the gradient of a function F is

(∇F )1 = (∇F )1 =
∂F

∂r
, (∇F )2 =

∂F

∂ϕ
, (∇F )2 =

1

r2

∂F

∂ϕ
,

(∇F )3 = (∇F )3 =
∂F

∂z
.

A matrix of covariant derivatives

Φi
,j =

∂Φi

∂Kj
+ Γi

jsΦ
s;

is (here i is the number of a row)

(
vi

,j

)
=


∂vr

∂r
∂vr

∂ϕ
− vϕ

∂vr

∂z
1
r

∂vϕ

∂r
1
r

∂vϕ

∂ϕ
+ vr

r
1
r

∂vϕ

∂z
∂vz

∂r
∂vz

∂ϕ
∂vz

∂z

 .
Because

div v =
1
√
g

∂

∂Ki

(√
gvi
)
,

the divergence of a vector v can be expressed as follows

div v =
1

r

∂(r vr)

∂r
+

1

r

∂vϕ

∂ϕ
+
∂vz

∂z
.

Similar for the Laplace operator of a function F

4F =
1
√
g

∂

∂Ki

(
√
ggis ∂F

∂Ks

)
,

hence,

4F =
1

r

∂

∂r

(
r
∂F

∂r

)
+

1

r2

∂2F

∂ϕ2
+
∂2F

∂z2
.

For the rotor ω = rot v of a vector v one has

ω1 =
1

r

∂vz

∂ϕ
− ∂vϕ

∂z
, ω2 =

1

r

∂vr

∂z
− 1

r

∂vz

∂r
, ω3 =

1

r

∂(rvϕ)

∂r
− 1

r

∂vr

∂ϕ
.

Here we used the representation for contravariant components of the vector rot(v):

(rot v)l = εijlvj,i = εijl ∂vi

∂Kj
.
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The divergence of a tensor P is a vector with contravariant components:

(div P )i = P is
,s = div (P

i
) + Γi

jsP
js.

Hence,

(div P )1 = div (P
1
)− 1

r
Pϕϕ, P

1
= (Prr,

1

r
Prϕ, Prz),

(div P )2 = div (P
2
) +

1

r2
(Prϕ + Pϕr), P

2
= (

1

r
Pϕr,

1

r2
Pϕϕ,

1

r
Pϕz),

(div P )3 = div (P
3
), P

3
= (Pzr,

1

r
Pzϕ, Pzz).

Therefore,

(div P )1 = div (P
1
)− 1

r
Pϕϕ =

1

r

∂

∂r
(rPrr) +

1

r

∂

∂ϕ
(Prϕ) +

∂

∂z
(Prz)−

1

r
Pϕϕ;

(div P )2 = div (P
2
) +

1

r2
(Prϕ + Pϕr) =

=
1

r

∂

∂r
(Pϕr) +

1

r2

∂

∂ϕ
(Prϕ) +

1

r

∂

∂z
(Pϕz) +

1

r2
(Prϕ + Pϕr);

(div P )3 = div (P
3
) =

1

r

∂

∂r
(rPzr) +

1

r

∂

∂ϕ
(Pzϕ) +

∂

∂z
(Pzz) .

The Laplace operator of a vector v is the vector with contravariant components:

4 (v)1 = 4 (vr)−
2

r2

∂vϕ

∂ϕ
− vr

r2
,

4 (v)2 = 4
(vϕ

r

)
+

2

r

∂

∂r

(vϕ

r

)
+

2

r3

∂vr

∂ϕ
,

4 (v)3 = 4 (vz) .

Here we used

4 (v)l = 4
(
vl
)

+ 2 gijΓl
is

∂vs

∂Kj
+ gij

(
∂Γl

ip

∂Kj
+ Γs

ipΓ
l
js − Γs

ijΓ
l
ps

)
vp.

The acceleration has the components(
dv

dt

)1

= D(vr)−
v2

ϕ

r
;

(
dv

dt

)2

=
1

r
D(vϕ) +

vrvϕ

r2
;

(
dv

dt

)3

= D(vz),

where

D(f) =
∂f

∂t
+ vr

∂f

∂r
+
vϕ

r

∂f

∂ϕ
+ vz

∂f

∂z
.
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1.7.3 Spherical Coordinate system

For a spherical coordinate system the transformation K is

K1 = r =
√
x2 + y2 + z2, K2 = θ = arctan

√
x2 + y2

z
, K3 = ϕ = arctan

y

x
.

The inverse mapping K−1 is

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ, (0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π).

Coordinate surfaces are: r = const > 0 are spheres having centers at the origin, θ = const
are half–cones having vertex at the origin, ϕ = const are half–planes passing through z–axis.
Coordinate curves are: l1 (intersection of θ = const and ϕ = const) are straight rays emanating
from the origin, l2 (intersection of r = const and ϕ = const) are semi–circles having centers at the
origin and which diameters lie on z–axis, l3 (intersection of r = const and θ = const) are circles,
which lie on planes perpendicular to the z–axis.

The spherical coordinate system is orthogonal with the bais and cobasis vectors

e1 = (sin θ cosϕ , sin θ sin ϕ, cos θ) = e1,

e2 = r (cos θ cos ϕ, cos θ sin ϕ,− sin θ), e2 =
1

r2
e2,

e3 = r sin θ (− sin ϕ, cos ϕ, 0), e3 =
1

r2 sin2 θ
e3.

The fundamental tensor is

(gij) =

 1 0 0
0 r2 0
0 0 r2 sin2 θ

 , (gij) =

 1 0 0
0 1

r2 0
0 0 1

r2 sin2 θ

 , |g| = r4 sin2 θ.

The Christoffel’s symbols are (we write down only nonvanishing symbols)

Γ2
12 = Γ2

21 =
1

r
, Γ3

13 = Γ3
31 =

1

r
Γ1

22 = −r,

Γ3
23 = Γ3

32 = cot θ, Γ1
33 = −r sin2 θ, Γ2

33 = − sin θ cos θ.

For example,

Γ1
33 =

1

2
g1s

(
∂g3s

∂K3
+
∂g3s

∂K3
− ∂g33

∂Ks

)
=

1

2
g11

(
∂g31

∂K3
+
∂g31

∂K3
− ∂g33

∂K1

)
=

=
1

2

(
−∂r

2 sin2 θ

∂r

)
= −1

2
2r sin2 θ = −r sin2 θ.

Spherical coordinate system is right–handle coordinate system, hence ε123 =
√
|g| = r2 sin θ.

Let v = (vr, vθ, vϕ) be physical components of a vector v, then tensor components of the vector
v are

(v1, v2, v3) = (vr,
vθ

r
,

vϕ

r sin θ
), (v1, v2, v3) = (vr, rvθ, r sin θ vϕ).

For example, |e3| =
√

(e3 · e3) =
√
r2 sin2 θ (sin2 ϕ+ cos2 ϕ) = r sin θ and therefore,

vϕ =
v3

|e3|
=

v3

r sin θ
, ⇒ v3 = r sin θ vϕ.
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Let a second order tensor P has the physical components:

(P ) =

 Prr Prθ Prϕ

Pθr Pθθ Pθϕ

Pϕr Pϕθ Pϕϕ

 .
Then contravariant components of P are

(P ij) =

 Prr
1
r
Prθ

1
r sin θ

Prϕ
1
r
Pθr

1
r2Pθθ

1
r2 sin θ

Pθϕ
1

r sin θ
Pϕr

1
r2 sin θ

Pϕθ
1

r2 sin2 θ
Pϕϕ

 .
The gradient of a function F is

(∇F )1 = (∇F )1 =
∂F

∂r
, (∇F )2 =

∂F

∂θ
, (∇F )2 =

1

r2

∂F

∂θ
,

(∇F )3 =
∂F

∂ϕ
, (∇F )3 =

1

r2 sin2 θ

∂F

∂ϕ
.

The matrix of covariant derivatives is (here i is a number of row)

(
vi

,j

)
=


∂vr

∂r
∂vr

∂θ
− vθ

∂vr

∂ϕ
− sin θvϕ

1
r

∂vθ

∂r
1
r

∂vθ

∂θ
+ vr

r
1
r

∂vθ

∂ϕ
− cos θ

r
vϕ

1
r sin θ

∂vϕ

∂r
1

r sin θ

∂vϕ

∂θ
1

r sin θ

∂vϕ

∂ϕ
+ vr

r
+ cot θ

r
vθ

 .
In the strength of

div v =
1
√
g

∂

∂Ki

(√
gvi
)
,

the divergence of a vector v is

div v =
1

r2

∂(r2 vr)

∂r
+

1

r sin θ

∂ sin θ vθ

∂θ
+

1

r sin θ

∂vϕ

∂ϕ
,

The Laplace operator of a function is

4F =
1

r2

∂

∂r

(
r2∂F

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂F

∂θ

)
+

1

r2 sin2 θ

∂2F

∂ϕ2
.

We used here

4F =
1
√
g

∂

∂Ki

(
√
ggis ∂F

∂Ks

)
.

The rotor ω = rot v of a vector v is

ω1 =
1

r sin θ

(
∂(sin θ vϕ)

∂θ
− ∂vθ

∂ϕ

)
, ω2 =

1

r2 sin θ

(
∂vr

∂ϕ
− sin θ

∂(rvϕ)

∂r

)
,

ω3 =
1

r2 sin θ

(
∂(rvθ)

∂r
− ∂vr

∂θ

)
.

We used the representation

(rot v)l = εijlvj,i = εijl ∂vi

∂Kj
.
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For example,

ω1 = εij1 ∂vj

∂Ki
= ε231 ∂v3

∂K2
+ ε321 ∂v2

∂K3
= ε123

(
∂v3

∂θ
− ∂v2

∂ϕ

)
=

= ε123

(
∂(r sin θ vϕ)

∂θ
− ∂rvθ

∂ϕ

)
= r ε123

(
∂(sin θ vϕ)

∂θ
− ∂vθ

∂ϕ

)
=

=
1

r sin θ

(
∂(sin θ vϕ)

∂θ
− ∂vθ

∂ϕ

)
where ε123 =

1

ε123

=
1

|g|
=

1

r2 sin θ
.

The divergence of a tensor P is the vector with the contravariant coordinates

(div P )i = P is
,s = div (P

i
) + Γi

jsP
js.

Thus, in spherical coordinate system

(div P )1 = div (P
1
)− 1

r
(Pθθ + Pϕϕ),

(div P )2 = div (P
2
) +

1

r
(Prθ + Pθr)−

cot θ

r2
Pϕϕ,

(div P )3 = div (P
3
) +

1

r2 sin θ
(Prϕ + Pϕr) +

cot θ

r2 sin θ
(Pθϕ + Pϕθ),

where

P
1

= (Prr,
1

r
Prθ,

1

r sin θ
Prϕ), P

2
= (

1

r
Pθr,

1

r2
Pθθ,

1

r2 sin θ
Pθϕ),

P
3

= (
1

r sin θ
Pϕr,

1

r2 sin θ
Pϕθ,

1

r2 sin2 θ
Pϕϕ).

The Laplace operator of a vector v is

4 (v)1 = 4 (vr)−
2

r

∂vθ

∂θ
− 2

r2 sin θ

∂vϕ

∂ϕ
− 2vr

r2
− 2 cot θ

r2
vθ,

4 (v)2 = 4
(vθ

r

)
+

2

r2

∂vθ

∂r
+

2

r3

∂vr

∂θ
− 2 cot θ

r3 sin θ

∂vϕ

∂ϕ
− vθ

r3 sin2 θ
,

4 (v)3 = 4
( vϕ

r sin θ

)
+

2

r sin θ

∂

∂r

(vϕ

r

)
+

2 cot θ

r3

∂

∂θ

( vϕ

sin θ

)
+

+
2

r3 sin2 θ

∂vr

∂ϕ
+

2 cot θ

r3 sin2 θ

∂vθ

∂ϕ
.

Here we used

4 (v)l = 4
(
vl
)

+ 2 gijΓl
is

∂vs

∂Kj
+ gij

(
∂Γl

ip

∂Kj
+ Γs

ipΓ
l
js − Γs

ijΓ
l
ps

)
vp.

The acceleration of a vector v has components(
dv

dt

)1

= D(vr)−
v2

ϕ + v2
θ

r
,

(
dv

dt

)2

=
1

r
D(vθ) +

vrvθ − cot θ v2
ϕ

r2
,(

dv

dt

)3

=
1

r sin θ
D(vϕ) +

vrvϕ + cot θ vϕvθ

r2 sin θ
,

where

D(f) =
∂f

∂t
+ vr

∂f

∂r
+
vθ

r

∂f

∂θ
+

vϕ

r sin θ

∂f

∂ϕ
.



Chapter 2

Mathematical modelling

2.1 Mathematical background

Let Ω ⊂ Rn be a bounded open set in Rn.

2.1.1 Volume.

Definition. We say that a set ω ⊂ Rn has a piecewise smooth boundary ∂ω, if it is possible to
represent the set ∂ω in the form of union of a finite number of subsets σj (smooth pieces) with the
following property: for every σj there is a point x0 ∈ σj and basis {ei} ⊂ Rn (in which x = xiei)
that

σj = {x ∈ Rn : xn = ψj(x1, x2, ..., xn−1), (x1, x2, ..., xn−1) ∈ σn
j ⊂ Rn−1},

where ψj : σn
j → R is a continuously differentiable mapping (σn

j is called a projection of σj on
Rn−1).

A bounded set ω ⊂ Rn with a piecewise smooth boundary ∂ω is called a volume.
Examples (of volume in R3): cube, ball

x2
1 + x2

2 + x2
3 = k2

tetrahedron

σ1 : x1 = 0

σ2 : x2 = 0; σ3 : x2 = 0

σ4 : x1 + x2 + x3 = 1

segment of cylinder

σ1 : x2
1 + x2

2 = 1

σ2 : x3 = 0

σ3 : x3 = 1

2.1.2 Additive functions of a set

Let {ω}be a collection of all volumes ω ⊂ Ω ⊂ Rn. A mapping Φ : {ω} → Rm is called an additive
mapping, if for any disjoint volumes ω1, ω2 ⊂ {ω} it is satisfired the equality

Φ(ω1 ∪ ω2) = Φ(ω1) + Φ(ω2).

47
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Let x ∈ Ω and a set �α(x) be open cube (hypercube) in Rn:

�α(x) = {y ∈ Rn : ||y − x||∞ < α}

Definition. An additive mapping Φ : {ω} → Rm is called continuous at the point x if
limα→0 Φ(�α(x)) = 0.

If a mapping Φ is continuous at any point x ∈ Ω, then it is called a continuous mapping in Ω.
An additive mapping Φ is called differentiable at a point x ∈ Ω, if there is a vector u ∈ Rm

that

lim
α→0

||(2α)−nΦ(�α(x))− u|| = 0.

The vector u ∈ Rm is called a derivative of the mapping Φ and we write u = Φ′.
A mapping Φ is called differentiable in Ω, if it is differentiable at every point x ∈ Ω. In this

case the mapping u : Ω → Rm appears acting by the formula u(x) = Φ′(x).

2.1.3 Integral.

Let u : Ω → Rm be a continuous function. Then we have the following main theorem of integral
theory.

There exists only one continuously differentiable in Ω additive function of set Φu : {ω} → Rm

for which Φ′
u(x) = u(x) for all x ∈ Ω. This function Φu is called a primitive function of u. Its

values for any volume ω ⊂ Ω are integrals of the function u : Ω → Rm on volume ω:

Φu(ω) =

∫
ω

u dω.

2.1.4 Surface measure and integral

Let a smooth hypersurface γ with a projection γ1 on Rn−1 be given by the equation

xn = ψ(x1, x2, ..., xn−1), (x1, x2, ..., xn−1) ∈ γ1,

where ψ : γ1 → R is a continuously differentiable function on γ1. Let a subset σ ⊂ γ be open
with respect to γ and it has a projection σ1 on Rn−1. Then σ1 is open set (in Rn−1).

Definition. The number

µ1(σ) =

∫
σ1

√
1 + |∇ψ|2 dσ1

is called a surface Lebesque measure of the set σ.
With the help of this measure an integral for a continuous function ϕ : γ → Rm is defined. We

consider additive continuously differentiable function of sets of Rn−1, which has the derivative

ϕ
√

1 + |∇ψ|2

We denote the primitive of this function by
∫

σ1
ϕ
√

1 + |∇ψ|2 dσ1. And we define∫
σ

ϕ dσ =

∫
σ1

ϕ
√

1 + |∇ψ|2 dσ1

If γ is piecewise smooth surface, which consists of a finite number N of disjoint smooth pieces
γi, such that γ = ∪N

i=1γi, then
∫

σ
ϕ dσ =

∑N
i=1

∫
γi
ϕ dσ.
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2.1.5 Gauss-Ostrogradskii theorem

Let Ω ⊂ Rn be an open set and a function u : Ω → Rn be a continuously differentiable on Ω. We
consider such volumes ω ⊂ Ω that the closure ω̄ ⊂ Ω (ω̄ is a closure of ω in Rn). Let ∂ω be a
piecewise smooth boundary of ω:

∂ω = ∪N
i=1γi.

We define a positive side of ∂ω by the following way. Let xn = ψi(x1, x2, ..., xn−1) be a parametriza-
tion of the surface γi. If there exists such δ > 0 that for all λ (0 < λ < δ) the points
(x1, x2, ..., xn−1, λ+ ψ(x1, x2, ..., xn−1)) /∈ ω, then the unit vector

n =
1√

1 + |∇ψ|2
(
∂ψi

∂x1

,
∂ψi

∂x2

, ...,
∂ψi

∂xn−1

, 1)

defines a positive side of ∂ω and the vector n is called a positive or outward drawn unit normal.
Otherwise, if (x1, x2, ..., xn−1, λ + ψ(x1, x2, ..., xn−1)) ∈ ω, then the outward drawn unit normal
vector is the vector

n =
1√

1 + |∇ψ|2
(
∂ψi

∂x1

,
∂ψi

∂x2

, ...,
∂ψi

∂xn−1

,−1)

The Gauss-Ostrogradskii theorem asserts that the equality (Gauss-Ostrogradskii formula):∫
ω

div(u) dω =

∫
∂ω

(nu) dσ.

is fair.

Also it is fair the generalization of this formula on the case of continuously differentiable
mapping P : Ω → L(Rn), i.e. for a tensor of the second rank:∫

ω

div(P ) dω =

∫
∂ω

P < n > dσ.

Proof. Let a be a test vector. Then we have the chain of equalities

a

∫
ω

div(P ) dω =

∫
ω

div(P ∗ < a >) dω =

∫
∂ω

nP ∗ < a > dσ = .

=

∫
∂ω

aP < n > dσ = a

∫
∂ω

P < n > dσ.

Lemma. If a function h is continuous on Ω ⊂ R3 (Ω is open set in R3) and if for any volume
ω ⊂ Ω we have the equality

∫
ω
h dω = 0, then h = 0 on Ω.

Rule. If we have a one-to-one continuously differentiable function x : Ω0 → Ω, where Ω0 ⊂
Rn, Ω ⊂ Rn, and if ω = x(ω0), where ω0 ⊂ Ω0, then∫

ω

f dω =

∫
ω0

fJ dω0.

Here J is the Jacobian.
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2.1.6 Linear transformations.

Let us consider transformations L(Rn).
Definition. Linear transformation A : Rn → Rn is called symmetrical transformation if

A∗ = A.

Linear transformation B is called transpose one of A if for all vectors a, b ∈ Rn we have

(a,Ab) = (Ba, b).

In matrix representation it means that
[B] = [A]∗

A set of symmetric linear transformations we denote Ls(R
n).

Definition. Linear transformation O ∈ L(Rn) is called orthogonal transformation if it satisfies
to

O ◦O∗ = I.

For the orthogonal transformations it is fair formulae

O∗ = O−1, det([O]) = ±1.

Composition of two orthogonal transformations is orthogonal transformation.
Definition. Linear transformation A is called equivalent transformation to A if there exists

orthogonal transformation O that
A = O ◦ A ◦O∗

Let function f : Ls(R
n) → Ls(R

n) be function which mappings linear symmetrical transformation
into linear symmetrical transformation.

Definition. A mapping f : Ls(R
n) → Ls(R

n) is called an invariant mapping with respect to
orthogonal transformations if for each orthogonal transformation O we have

f(O ◦ A ◦O∗) = O ◦ f(A) ◦O∗

In continuum mechanics such functions are called isotropic functions.
Theorem. All continuous isotropic functions f : Ls(R

n) → Ls(R
n) have representation

f(A) =
n−1∑
k=0

ϕkA
k,

where coefficients ϕk are scalar functions only invariants of linear transformation A.
Proof. We will prove this theorem for n = 3.
We choose orthogonal basis {ei} and we consider all linear transformations in this basis. Let

A be a symmetrical linear transformation. Because matrix A is a symmetrical matrix then there
exists an orthogonal matrix O such that

A = O ◦ A ◦O∗ =

 a1 0 0
0 a2 0
0 0 a3

 ,

where ai (i = 1, 2, 3) are eigenvalues of matrix A.
We show that matrix B = O ◦ f(A) ◦O∗ = f(A) is a diagonal matrix, too.
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Really, let matrix B have representation

B =

 b11 b12 b13
b21 b22 b23
b31 b32 b33


and we take the orthogonal matrix

O1 =

 1 0 0
0 −1 0
0 0 −1

 .

Then by virtue of O1O is orthogonal matrix, we get

O1BO
∗
1 = O1(Of(A)O∗)O∗

1 = f(O1OA(O∗
1O)∗) = f(O1AO

∗
1).

But O1AO
∗
1 = A, and

O1BO
∗
1 =

 b11 −b12 −b13
−b21 b22 b23
−b31 b32 b33

 = f(A) = B.

We receive that b12 = b13 = 0. Similarly, we find that b23 = b32 = 0 and bii = fi(a1, a2, a3). We
take orthogonal transformation

O2 =

 0 1 0
1 0 0
0 0 1

 ,

then

O2BO
∗
2 =

 b22 0 0
0 b11 0
0 0 b33

 = f(O2AO
∗
2) = f

 a2 0 0
0 a1 0
0 0 a3

 ,

it means, that

f1(a2, a1, a3) = f2(a1, a2, a3), f2(a2, a1, a3) = f1(a1, a2, a3), f3(a2, a1, a3) = f3(a1, a2, a3).

We will consider some cases.
10. Assume that (a1 − a2)( a2 − a3)(a3 − a1) 6= 0. Let us consider linear system of equations

bii = α+ βai + γa2
i (i = 1, 2, 3)

with respect to α, β, γ. Determinant of this system is (Gramma’s determinant)

∆ = det

 1 a1 a2
1

1 a2 a2
2

1 a3 a2
3

 = (a1 − a2)( a2 − a3)(a3 − a1) 6= 0.

Because ∆ 6= 0, then we get

α =
1

∆
det

 b11 a1 a2
1

b22 a2 a2
2

b33 a3 a2
3

 , β =
1

∆
det

 1 b11 a2
1

1 b22 a2
2

1 b33 a2
3

 , γ =
1

∆
det

 1 a1 b11
1 a2 b22
1 a3 b33

 .
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Functions α = α(a1, a2, a3), β = β(a1, a2, a3), γ = γ(a1, a2, a3) have property that they are unal-
tered by interchanges of pairs of a1, a2, a3. Really, for example, ∆′ = −∆,

α(a2, a1, a3) =
1

∆′ det

 f1(a2, a1, a3) a2 a2
2

f2(a2, a1, a3) a1 a2
1

f3(a2, a1, a3) a3 a2
3

 = − 1

∆
det

 f2(a1, a2, a3) a2 a2
2

f1(a1, a2, a3) a1 a2
1

f3(a1, a2, a3) a3 a2
3

 = α(a1, a2, a3).

Definition. Any function f(x1, x2, x3) whose value is unaltered by interchanges of pairs of
x1, x2, x3 is said to be symmetrical in x1, x2, x3.

Theorem. Continuous symmetrical function can be expressed as a function of the invariants
f(x1, x2, x3) = g(J1, J2, J3), where J1 = x1 + x2 + x3, J2 = x1x2 + x2x3 + x3x1.

Then we receive that

α = α(J1(A), J2(A), J3(A)), β = β(J1(A), J2(A), J3(A)), γ = γ(J1(A), J2(A), J3(A))

and B = αI + βA+ γA
2
. But B = O ◦B ◦O∗, then

B = O∗ ◦B ◦O = αI + βO∗ ◦ A ◦O + γO∗ ◦ A2 ◦O = αI + βA+ γA2.

20. Now let a1 = a2 6= a3, then f2(a1, a2, a3) = f1(a1, a2, a3) and we consider equations

bii = α+ βai + γ0 (i = 1, 3)

By virtue of a1 6= a3, we have

α =
1

a3 − a1

det

(
b11 a1

b33 a3

)
, β =

b33 − b11
a3 − a1

.

Functions α = α(a1, a2, a3), β = β(a1, a2, a3) are again symmetrical functions of a1, a2, a3, and
they are functions of invariants

α = α(J1(A), J2(A), J3(A)), β = β(J1(A), J2(A), J3(A)).

In this case we have B = αI + βA, then we get

B = O∗ ◦B ◦O = αI + βO∗ ◦ A ◦O = αI + βA.

30. Let a1 = a2 = a3, then we have b11 = b22 = b33 and we consider equation

b11 = α

Then α is a symmetrical function of a1, a2, a3. We have α = α(J1(A), J2(A), J3(A)) and

B = O∗ ◦B ◦O = αI.

2.2 Differential equations

2.2.1 Cauchy problem.

Let u : Ω × τ → Rn be a function, where Ω is an open set Ω ⊂ Rn(x) and τ ⊂ R1(t) is an open
interval. We study the problem. Find a differentiable function x : τ → Rn such that for all t ∈ τ

dx

dt
= u(x, t). (2.1)
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We require that the function x(t) satisfies the initial condition

x(t0) = ξ (2.2)

for some point t = t0 ∈ τ and ξ ∈ Ω.
Definition The problem of finding a solution x(t) of equation (2.1) and satisfying condition

(2.2):
dx

dt
= u(x, t), x(t0) = ξ (2.3)

is called a Cauchy problem.
We define the following condition on a function u : Ω× τ → Rn.
Condition D. (a) A function u : Ω× τ → Rn is continuous on Ω× τ ⊂ Rn+1

(b) For all fixed t ∈ τ the function ut : Ω → Rn is continuously differentiable on Ω. Here
ut(x) = u(x, t).

Theorem. Let a function u(x, t) (u : Ω× τ → Rn) satisfies the condition D. There exists one
and only one solution x = x(ξ, t) of the Cauchy problem (2.3), defined on some interval τ1 ⊂ τ ,
which contains the point t0 ∈ τ1. For all fixed t ∈ τ1 this solution is continuously differentiable as
the function x : ξ → x(ξ, t) and the derivative ∂x

∂ξ
satisfies the perturbation equation

d

dt
(
∂x

∂ξ
) =

∂u

∂x

∂x

∂ξ
,
∂x

∂ξ
(t0) = I.

Corollary (Euler’s formula). Let a function u(x, t) satisfies the condition D. The formula

dJ

dt
= J div(u)

is correct.
Proof. Let L = ∂x

∂ξ
, N = ∂u

∂x
be matrices with elements (Lij) and (Nij), and J = det(L). By

virtue of the theorem we have
∂Lij

∂t
= NiαLαj.

We wish to prove that
∂

∂t
J = J tr(N). (2.4)

Let Aij be a cofactor of Lij, then

Jδij = LiαAjα,

where δij is the Kroneker’s symbol. In particular, if i = j, then (the symbol i is fixed)

J = LiαAiα (2.5)

Because Aiα does not depend on Lij for all α, then it is encountered only one time in the sum
(2.5), it means that

Aij =
∂

∂Lij

J

Differentiating the determinant J with respect to time t and using (2.4), we obtain

∂

∂t
J =

∂J

∂Lαβ

∂Lαβ

∂t
= Aαβ(NαγLγβ) = JδαγNαγ = J Nαα = J tr(N).
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Remark. If one consider J as a function of the independent variables (x, t), then J(ξ, t) =
J(x(ξ, t), t) and

dJ

dt
≡ ∂J

∂t
+

∂J

∂xα

dxα

dt
.

In this case the Euler’s formula has the representation

dJ

dt
= J

∂uα

∂xα

.

2.3 Subject and method of continuum mechanics

1. The subject of study in continuum mechanics is physical bodies (physical continuum), having
properties of continuous media and internal mobility.

A physical continuum is a medium field with a continuous matter such that every part of the
medium, however small, is itself a continuum and entirely filled with the matter. A property of
internal mobility (or deformation) consists in translating separated parts of the physical continuum
with respect to each other, but the external form is invariant.

Strictly saying, by virtue of atom-molecular construction of any matter, we have no such phys-
ical bodies. When we say about physical continuum we suppose that the property of continuous
matter is approximately fulfilled. It means that we regard the process in which the character scale
of molecular process is less than minimum scale of study interaction with media. These scales are
distinguished for different conditions. For example, average distance between particles (molecules)
of air near of the Earth is l ∼ 10−6cm, in atmosphere on the height of 60km it is l ∼ 10−3cm
and in cosmos it is l ∼ 1cm. If one consider that lower bound of length L on which processes are
studied in these mediums is equal to 10−1cm, 102cm and 105cm, then for all those cases we have
l/L ∼ 10−5. Therefore cosmos media we can regard as physical continuum in the same meaning
as we assume for the air near the Earth.

That is the continuum hypothesis implies that a very small volume will contain a large number
of molecules. For example, V = 1cm3 of air contains N = 2.687 × 1019 molecules under normal
conditions (Avogadro hypothesis). Thus, in a cube 0.001cm on a side, there are 2.687 × 1010

molecules–which is a large number. We are not interested in the properties of each molecule at
some point x but rather in the average over a large number of molecules in the neighborhood of
the point x. Mathematically, the association of averaged values of properties at a point x also
gives rise to a continuum of points and numbers. In summary, the continuum hypothesis implies
the postulate: ”Matter is continuously distributed throughout the region under consideration with
a large number of molecules even in macroscopically small volumes.”

Schematically continuum media is separated on gas, liquid and solid. It is a conditional sepa-
ration. In this consideration we use some statistical aspects of molecular motions. For example, in
gases, the molecules are far apart having an average separation between the molecules of the order
of 3.5 × 10−7cm. The cohesive forces between the molecules are weak. The molecules randomly
collide and exchange their momentum, heat, and other properties and thus give rise to viscosity,
thermal conductivity, etc. These effects, though molecular in origin, are considered the physi-
cal properties of the continuum itself. In liquids, the separation between the molecules is much
smaller and the cohesive forces between a molecule and its neighbors are quite strong. Again, the
averaged molecular properties resulting from these cohesive forces are taken as the properties of
the medium. While air and water are treated through the same continuum hypothesis, the effects
of their motions are different due to the differences in their molecular properties, e.g. viscosity,
thermal conductivity, etc.
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2. Continuum mechanics describes the global behavior of gases, liquids or solids under the
influence of external disturbances.

The concept of a physical continuum makes the powerful methods of calculus available for the
study of nonuniform distributions of physical variables and provides an easily visualized physical
model that closely approximates observations of matter in the large.

The problems of continuum mechanics are multiform. Continuum mechanics is a foundation
for the understanding of many aspects of the applied sciences and engineering. It is a subject of
enormous interest in numerous fields like biology, biomedicine, geophysics, meteorology, physical
chemistry, plasma physics and almost all branches of engineering.

Continuum mechanics is separated on experimental–physical and theoretical parts. We will
consider only theoretical continuum mechanics.

A method of theoretical continuum mechanics consists of constructing a mathematical model of
behavior of continuous media. A mathematical model is a system of relationships (equations and
inequalities) between values, which characterize different properties of media. Usually they are
differential (finite) equations. To these equations the initial and boundary data are supplemented.
Mathematical model has to have a property of correctness. It means that the solutions of involving
in it equations have to exist, to be unique and stable. For some models there is no strict prove
of a correctness, in this case one has to use the criteria of practice. Physical experiments serve as
tests for the validity of a theoretical model.

After constructing a mathematical model we produce purely mathematical methods for study-
ing it. For this goal we use analytical and numerical methods. By virtue of difficulty of solving of
continuum mechanics equations the methods of simplifications of them have a wide spreading.

3. For the better understanding of physical foundations of construction of mathematical model
of continuum mechanics at first we consider a molecular (”microscopic”) description.

Let some volume V of continuum media contains N molecules µi (i = 1, 2, ..., N) with coor-
dinates of position x and mass mi. A motion xi(t) of molecule µi obeys to the second Newton’s
law

mi
d2xi

dt
= fi, xi(t0) = xi0,

dxi

dt
(t0) = vi0, (i = 1, 2, ..., N),

where fi is a force, which acts on the molecule µi. A solution of these equations defines position
and velocity of molecule µi at any moment of time t. If we have been able to solve these equations
we could answer on any question about behavior of media in the volume V . However this way is
impossible, because the number N is very large and we don’t exactly know the forces fi. Therefore
in continuum mechanics we adopt a macroscopic viewpoint: we ignore all the fine details of the
molecular or atomic structure and, for the purpose of study, we replace the microscopic medium
with a hypothetical continuum in which the basic values are replaced by average values.

To distinguish the continuum or macroscopic model from a microscopic one a concept of the
mean free path plays a fundamental role. This concept can be defined as an average distance a
molecule travels between successive collissions with other molecules. The ratio of the mean free
path λ to the characteristic length L of the physical boundaries of interest, called the Knudsen
number Kn = λ/L, may be used to determine the separating line between the macroscopic and
microscopic models. Based on the Knudsen number the motion regimes are grouped as:

(a) continuum (Kn < 0.1);
(b) rarefied gas (0.1 < Kn < 5);
(c) free molecular flow (Kn > 5).
Regimes (a) and (b) belong to macroscopic models. All these regimes are encoutered in real

life.
Two macroscopic theories are the most widespread: molecular-kinetic theory and phenomeno-

logical one.
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In molecular-kinetic theory all average values are described with the help of theoretical-
probability approach. The mathematical model has the form of the Boltzmann equation. We
study the phenomenological theory.

4. A basis of the phenomenological theory forms a representation that each point of a body
V has density, velocity and other mechanical values. These values are defined as limits of some
average values, which are formed by the following way.

Let molecules µi (i = 1, 2, ..., N) from volume V have mass mi, velocity vi and internal energy
Ui. With the help of these values one calculates macrocharacteristics of the volume V : M =∑N

i=1mi is the mass, K =
∑N

i=1mivi is the impuls, E =
∑N

i=1(mi
v2

i

2
+Ui) is the full energy. Then

ρ∗ = M/V is the average density, v = K/M is the average velocity, U∗ = U/V is the average

energy. Here U =
∑N

i=1(mi
(vi−v∗)2

2
+Ui). The macroscopic characteristics of the volume V can be

expressed by means of the average values:

M = ρ∗V, K = ρ∗v∗V, E = (
1

2
ρ∗v

2
∗ + U∗)V.

The hypothesis of the physical continuum allows to give to the point x the ”limit” values of
average ones, for example, ρ = lim ρ∗, v = lim v∗ where the volume V vanishies that x ∈ V .
A mathematical model has the form of conservation laws of changing macroscopic characteristics
with respect to time.

We will construct the phenomenological theory of continuum mechanics as the theory of some
mathematical structure. This mathematical structure is based on some system of axioms.

2.4 Basic definitions and axioms

Definition 2.1. Continuous medium is a part of changing with time physical space. It means that
continuous media is a part of Euclidean three dimensional space R3, and the time is independent
from events. We consider non-relativistic Newtonian approach, i.e. the time is absolute.

Axiom 1 (axiom of space-time). Continuous medium is a subset of three dimensional Eu-
clidean affine space. The time is absolute.

An Euclidean-affine space is a curvature-free space in which a set of rectangular Cartesian
coordinates can always be introduced on a global scale. It is a linear three dimensional space over
field of real numbers R. In this space the origin point O is fixed. Open connected sets Ω ∈ R3 is
regarded as a positions (configurations) of continuous medium.

Set Ω ∈ R3 is called a material domain (or media) if an additive positive function of sets M(ω)
is defined on it, which is named by mass. It is supposed that for any (nonempty) volume ω ⊂ Ω
its mass is M(ω) > 0. The additiveness of mass means that if ω1 ⊂ Ω, ω2 ⊂ Ω and ω1 ∩ ω2 = 0,
then M(ω1 ∪ ω2) = M(ω1) +M(ω2).

Besides mass we determine another additive function of set, which we call internal energy and
we denote it by Ei.

Definition 2.2. Media Ω is called material continuum, if functions M and Ei are differen-
tiable on Ω and their densities (volume densities) are bounded.

Volume density of mass is denoted by ρ and it is called a density of media (or simply density).
Volume density of energy is denoted by ρU and U is called specific internal energy (internal energy
per unit mass). The following formula

M(ω) =

∫
ω

ρdω,Ei(ω) =

∫
ω

ρUdω
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determine the connection between additive function of set ω and its volume density.

Axiom 2 (axiom of material continuum). Continuous medium is material continuum.

The transition of continuous medium from position Ω1 into position Ω2 is called its motion. A
motion of continuous medium depends of time t, which is changed in some interval τ = (a, b) ∈ R.
Position of medium at the moment of time t is denoted by Ωt. We fix a moment of time t0 ∈ τ
and for all t ∈ τ we consider one-parametrical family of movements γt from position Ωt0 onto
Ωt. It means that we have mapping γ : Ωt0 × τ −→ Ωt . We denote γt(ξ) = γ(ξ, t) for all
ξ ∈ Ωt0 and γξ(t) = γ(ξ, t) for all t ∈ τ or we will write γt : Ωt0 −→ Ωt, γξ : τ −→ Ωt. A Set
{x ∈ R3 : x = γξ(t), t ∈ τ} is called a trajectory of point ξ ∈ Ωt0 .

Axiom 3 (axiom of movement). For all t ∈ τ there exist the movement γt of continuous
medium from position Ωt0 onto position Ωt and mapping γt : Ωt0 −→ Ωt is homeomorphism; for
all point ξ ∈ Ωt0 the mapping γξ : τ −→ Ωt is continuous and piecewise continuously differentiable
function on τ .
Remark.(definition of Homeomorphism)
Homeomorphism From Wikipedia, the free encyclopedia. (Redirected from Homeomorphic)
This word should not be confused with homomorphism.

In topology, two geometrical objects (or ”spaces”) are called homeomorphic if, roughly speaking, the
first can be deformed into the second by stretching and bending; cutting is also allowed, but only if the
two parts are later glued back together along exactly the same cut. For example, a square and a circle
are homeomorphic. A hollow sphere containing a smaller solid ball is homeomorphic to a hollow cube
with a solid cube outside of it. If two objects are homeomorphic, one can find a continuous function
which maps points from the first object to corresponding points of the second object, and vice versa.
Such a function is called a homeomorphism; intuitively, it maps points in the first object that are ”close
together” to points in the second object that are close together, and points in the first object that are
not close together to points in the second object that are not close together. Topology is the study of
those properties of objects that do not change when homeomorphisms are applied.

For a formal definition, suppose X and Y are topological spaces, and f is a function from X to Y .
Then f is a homeomorphism iff all the following hold:

1. f is a bijection, 2. f is continuous, 3. the inverse function f−1 is continuous.
If there exists a homeomorphism f : X → Y, then Y is said to be homeomorphic to X (or to be a

homeomorph of X). In this case, Y is also homeomorphic to X, since f−1 is a homeomorphism, and we
say that X and Y belong to the same homeomorphism class.

For example, the unit circle S1 and the unit square in R2 are homeomorphic. The open interval
(−1, 1) is homeomorphic to the real numbers R. The product space S1 × S1 and the two-dimensional
torus are homeomorphic.

The third requirement, that f−1 be continuous, is essential. Consider for instance the function
f : [0, 2π) → S1 defined by f(ϕ) = (cos(ϕ), sin(ϕ)). This function is bijective and continuous, but not a
homeomorphism.

If two spaces are homeomorphic then they have exactly the same topological properties. For example,
if one of them is compact, then the other is as well; if one of them is connected, then the other is as
well; if one of them is Hausdorff, then the other is as well; their homology groups will coincide. Note
however that this does not extend to properties defined via a metric; there are metric spaces which are
homeomorphic even though one of them is complete and the other is not.

Homeomorphisms are the isomorphisms in the category of all topological spaces. As such, the com-
position of two homeomorphisms is again a homeomorphism, and the set of all homeomorphisms X → X
forms a group.

Informal discussion
The intuitive criterion of stretching, bending, cutting and gluing back together takes a certain amount

of practice to apply correctly–it may not be obvious from the description above that deforming a line
segment to a point is impermissible, for instance. It is thus important to realize that it is the formal
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definition given above that counts.
This characterization of a homeomorphism often leads to confusion with the concept of homotopy,

which is actually defined as a continuous deformation, but from one function to another, rather than one
space to another. In the case of a homeomorphism, envisioning a continuous deformation is a mental
tool for keeping track of which points on space X correspond to which points on Y – one just follows
them as X deforms. In the case of homotopy, the continuous deformation from one map to the other is of
the essence, and it is also less restrictive, since none of the maps involved need to be one-to-one or onto.
Homotopy does lead to a relation on spaces: homotopy equivalence.

There is a name for the kind of deformation involved in visualizing a homeomorphism. It is (except
when cutting and regluing are required) an isotopy between the identity map on X and the homeomor-
phism from X to Y .

This axiom allows to postulate a point of continuous medium. A material point (or particle)
of continuous medium is called a point x = γ(ξ, t) ∈ Ωt, which is obtained as a result of movement
of fixed point ξ ∈ Ωt0 . Every particle describes in R3 the trajectory of this point.

Definition 2.3. A set of points which consists of the same particles for all t ∈ τ is called
a material volume ωt. By virtue of axiom 3 for all ξ ∈ Ωt0 and all (except maybe finite number)
values t ∈ τ there exists a derivative

∂

∂t
γ(ξ, t).

Definition 2.4. A derivative ∂
∂t
γ(ξ, t) is called a velocity of point ξ ∈ Ωt0 and it is denoted

by

v =
∂

∂t
γ(ξ, t).

Let F be either a scalar or vector or tensor function of position x and time t, representing
some physical property of the movement. There are two ways of description of field F given on the
moving continuous medium. The first one is called by Eulerian way. It consists of in the giving
of value of field F on the position Ωt as a function of x ∈ R3 and time t ∈ τ , i.e. it has a value
F (x, t).

A second way is called Lagrangian one. In this case given field is considered as a function of
each particle ξ ∈ Ωt0 at the moment of time t ∈ τ . Let it be F (ξ, t). The functions F (x, t) and
F (ξ, t) are connected by identity

F (ξ, t) = F (γ(ξ, t), t). (2.6)

There are two possible time derivatives: ∂F (ξ,t)
∂t

and ∂F (x,t)
∂t

A value
∂F (x, t)

∂t
is the rate of change of field F measured by an observer stationed at the

fixed point x ∈ Ωt and it is a local time variation of F .

On the other hand,
∂F (ξ, t)

∂t
is a rate of change of F (ξ, t) measured by an observer moving

with the particle. The differentiation (2.6) with respect to t gives

∂F (ξ, t)

∂t
=
∂F (x, t)

∂t
+
∂F (x, t)

∂x
< v > .

A value
∂F (x, t)

∂t
+
∂F (x, t)

∂x
< v > is called a total derivative (material or substational deriva-

tive, or the derivative following the motion) and it is denoted by symbol
dF (x, t)

dx
. So, for any

smooth field F = F (x, t) its derivative is given by formula

dF (x, t)

dt
≡ ∂F (x, t)

∂t
+
∂F (x, t)

∂x
< v > .
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In particular, if F = x = γ(ξ, t) and we obtain the formula for the definition of velocity

dx

dt
=
∂γ(ξ, t)

∂t
= v.

Definition 2.5. Coordinates (ξ, t) are called material or Lagrangian coordinates and (x, t)
are called spatial or Eulerian coordiates.

A difference between these descriptions is essential. For example, if field of a vector of velocity
is known in Lagrange description, i.e. we have a vector–function v(ξ, t), then we can find a
trajectories of particles (and then it means we can find a movement of continuous medium)

x = ξ +

∫ t

t0

v(ξ, t′)dt′

And if we know a field v in Eulerian description (it means that we have v = v(x, t), then the same
problem of determination of trajectories gives us the Cauchy problem for the system of ordinary
differential equations

dx

dt
= v(x, t), x(ξ, t0) = ξ.

In spite of the simplicity of first problem a Lagrangian description is convenient not always. In
particular, the main differential equations of continuum mechanics have simpler form in Eulerian
description.

In Eulerian description a map γ : Ωt0 × τ −→ Ωt is obtained as a solution of Cauchy problem
(2). If vector–function v(x, t) is continuously differentiable then for such solution there exists
Jacobian J = det(∂x

∂ξ
). For the Jacobian we have a kinematic formula, known as Euler’s formula:

dJ

dt
= Jdiv(v).

In addition to the main numerical characteristics of the material media (mass, energy) there
are the following additive functions of the set ω ⊂ Ω:

(i) linear momentum:

K(ω) =

∫
ω

ρvdω

(ii) angular momentum:

H(ω) =

∫
ω

ρ(x× v)dω

(iii) kinetic energy:

Ek(ω) =
1

2

∫
ω

ρv2dω

(iv) total energy: E(ω) = Ek(ω) + Ei(ω).
The changes of these magnitudes under movement are the result of force and energetic actions

on the volume ω. These actions are realized with the help of new magnitudes: resultant force
F (ω), resultant moment G(ω) and power N(ω).

If we take these magnitudes for a fixed moving material volume ωt ⊂ Ωt then they will be only
functions of time t. A following axiom determine the relations between them.

Axiom 4 (balance, poise). For arbitrary moving material volume ωt ⊂ Ωt and in any time
t ∈ τ we have

d

dt
M(ωt) = 0,

d

dt
K(ωt) = F (ωt),

d

dt
H(ωt) = G(ωt),

d

dt
E(ωt) = N(ωt).

Sometimes this axiom is called a ”hardening” principle, because these equalities are fulfilled
for movement of rigid body.
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2.5 Material volume and surface

A very useful in continuum mechanics is notation of a ”closed system” or a ”material volume”.
A material volume is an arbitrary collection of particles enclosed by a surface also formed of
particles. All points of the material volume, including the points of its boundary, move with the
local continuum velocity. A material volume moves with the flow and deforms in shape as the flow
progresses, with the stipulation that no mass ever fluxes in or out of the volume, viz., both the
volume and its boundary are always composed of the same particles. We shall denote a material
volume by ωt and its surface by ∂ωt. Note that the use of material volume in continuum mechanics
is in the form of a thought experiment in which one isolates a parcel of material volume out of
the flow field and gives it a hypothetical surface. This helps formulate the conservation laws for
continuum mechanics in a straightforward manner.

To obtain the necessary conditions for a bounding surface of a material volume, first note that
the material volume is enclosed by a surface formed of particles. This surface is called the material
bounding surface. Since there cannot be a transfer of material across a material bounding surface,
the particles forming the inside surface of the material volume can never become the particles
forming the outside surface of the same material volume. Consequently, it qualifies as a material
surface since it is always composed of the same material points.

Let f(x, t) = 0 be the equation of a bounding surface ∂ωt enclosing the material volume ∂ω.
Let n be the unit external normal to ∂ωt, then:

n =
∇f
|∇f |

To obtain the necessary conditions for ∂ωt to be the bounding surface of a material volume, we
follow Kelvin who states that ”...to express the fact that every particle of fluid remains on the
same side of the surface, or that there is no flux across it, we must find the normal motion of the
surface ...” Let vn be the velocity of any point normal to ∂ωt; then the equation of the surface at
time t+ δt is

f(x+ δx, t+ δt) = 0

where
δx = n vnδt

Using Taylor’s expansion, we have:

∂f

∂t
+ vn(n ∇f) = 0 (2.7)

If the bounding surface is a material surface, then the velocity at any point normal to the surface
must be equal to the normal continuum velocity, i.e., vn = v · n. Using Equation (2.7), we get:

df

dt
=
∂f

∂t
+ vn(n ∇f) = 0

Thus, for a bounding surface to be a material surface, the surface f(x, t) = 0 must satisfy this
equation.

Remark (another proof).

f(x, t) = 0, 0 = f(x+ δx, t+ δt) = f(x, t) +
∂f

∂t
δt+∇f δx+ ...

= δt(
∂f

∂t
+∇f δx

δt
) + ... = δt(

∂f

∂t
+∇f v) + ...

f(γ(ξ, t), t) = 0,
df

dt
= ft + v∇f = ft + vn|∇f |.
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2.6 Relation between elemental volumes

We shall denote any arbitrary closed volume in the Ωt0 by ωt0 so that it is a volume ”frozen” in time
with surface ∂ωt0 . Let F (x, t) be a physical property per unit volume and let it be continuously
differentiable in Ωt. The amount of this property in a material volume ωt at the time t > t0 is∫

ωt

F (x, t) dω =

∫
ωt0

F 0(ξ, t)J dω0

The rate of change of value
∫

ωt
F (x, t) dω as the volume moves with the movement is (we assume

that movement γ : Ωt0 → Ωt is continuously differentiable one):

d

dt

∫
ωt

F (x, t) dω =
d

dt
(

∫
ωt0

F 0(ξ, t)J dω0) =

∫
ωt0

∂

∂t
(F 0(ξ, t)J) dω0 =

=

∫
ωt0

(J
∂F 0(ξ, t)

∂t
+ F 0(ξ, t)

∂J

∂t
)dω0

By virtue of Euler’s formula, we get

d

dt

∫
ωt

F (x, t) dω =

∫
ωt0

(J
∂F 0(ξ, t)

∂t
+ F 0(ξ, t)J(div v))dω0

Reverting to the material volume ωt, we obtain

d

dt

∫
ωt

F (x, t) dω =

∫
ωt

(
dF

dt
+ F (div v))dω

Using the definition of d
dt

, we also have:

d

dt

∫
ωt

F (x, t) dω =

∫
ωt

(
∂F

∂t
+ v∇F + F div v)dω =

∫
ωt

(
∂F

∂t
+ div (Fv))dω

We use Gauss-Ostrogradskii divergence theorem

d

dt

∫
ωt

F (x, t) dω =

∫
ωt

∂F

∂t
dω +

∫
∂ωt

Fvn dσ,

where n is the outward drawn unit normal to ∂ωt.
We received the Reynolds’ transport theorem, which states that the rate of change of the total

property F (x, t) contained in material volume is equal to the volume integral of the instantaneous
changes of F (x, t) while keeping ωt fixed at a given time, plus the surface integral of the rate of
spreading of F (x, t) to the adjoining region due to the surface velocity v.

2.7 Kinetics of movement

For further we have to specify the right sides in the formulae of Axiom 4. At first we define a
concept of resultant forces. We will consider two types of forces which act on a material volume
ω:

(a) body forces,
(b) surface forces.
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The body forces are forces of an extensive character acting on the bulk portions of the contin-
uous medium and arise due to some external cause. Examples of the external causes are (a) the
force of gravity, (b) forces of electric and magnetic origin acting on a continuous medium carrying
charged particles, etc.. The body force is proportional to the volume of a continuous medium and
therefore it is expressed as a force per unit volume.

Definition 2.6. An additive vector-function Fe having a density (body force per unit mass)
is called an external body force. If we denote the body force per unit mass by the symbol f(x, t),
so that the body force per unit volume will be ρf . Therefore, the external body force acting on the
volume ω is given by formula

Fe(ω) =

∫
ω

ρf dω.

And the moment of external body force acting on any material volume ω is defined by the formula

Ge(ω) =

∫
ω

ρ(x× f) dω.

The surface forces are forces of an intensive or local nature. The surface forces arise due
to mechanical interaction between contiguous portions of a continuous medium. To explain the
phenomena from a continuum point of view, we consider two adjacent portions of continuous
medium separated by an imaginary surface drawn in the medium. At the separating surface
there exists a direct mechanical contact between the medium particles on the two sides of the
surface, thus, giving rise to forces of action and reaction. If the continuous medium on one side is
imagined to have been replaced by the force system which it has produced, then at each point of
the imaginary surface there will be a force vector.

Internal surface force acts on a volume ω only through its surface ∂ω. In order to define it we
consider cross section Σ of Ω by some plane dividing Ω on two parts Ω1 and Ω2.

Definition 2.7. Additive vector-function Fi of sets σ ⊂ Σ is called an internal surface force
acting through a cross section Σ from the side Ω2 on the Ω1.

Axiom 5 (of internal surface forces). An internal surface force is defined for any cross section
Σ of Ω and it has a density (surface ) on Σ.

Remark. This axiom is named a Cauchy stress principle and it asserts the existence and
differentiability of this force.

Let n be a local outward drawn unit normal vector of Σ directed in the side of Ω2 (positive
side of Ω1). The density of internal surface force we denote by pn.

Definition 2.8. A vector pn is called stress vector of surface forces acting on Ω1 through the
area with the normal n.

And for the σ ⊂ Σ the force, which acts on part Ω1 from the side of part Ω2 through an area
σ is equal to

Fi(σ) =

∫
σ

pn dσ.

Definition 2.9. The value

Fi(ω) =

∫
∂ω

pn dσ.

is called an internal surface force acting on volume ω ⊂ Ω from the side of Ω. Here n is positive
outward drawn unit normal vector to the surface volume ω.

The value

Gi(ω) =

∫
∂ω

(x× pn) dσ
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is called a moment of internal surface force, acting on the volume ω.
Axiom 6 (of forces and moments). The (main) resultant force and resultant moment, acting

on any material volume ω ⊂ Ω are given by formulae:

F (ω) = Fi(ω) + Fe(ω) =

∫
∂ω

pn dσ +

∫
ω

ρf dω,

G(ω) = Gi(ω) +Ge(ω) =

∫
∂ω

(x× pn) dσ +

∫
ω

ρ(x× f) dω.

Remark. This axiom asserts that only such moments and forces act on the volume ω ⊂ Ω
(we have no other forces and moments).

We have to determine a power N(ω).

Definition 2.10. The values

Ni(ω) =

∫
∂ω

vpn dσ, Ne(ω) =

∫
ω

ρvf dω

are called powers developing by internal surface forces and external body forces.
By the similar way as for an internal surface force we define a heat output.

Definition 2.11. An additive scalar function Q of sets σ ⊂ Σ is called a heat output through
area Σ from the part Ω2 into Ω1.

Axiom 7 (of heat output). A heat output is defined for any cross section Σ of Ω and it has a
density (surface density) on Σ. The surface density of heat output is denoted by qn and the value

Q(σ) =

∫
σ

qn dσ

gives the heat output from the Ω2 into Ω1 through the area σ ⊂ Σ.

Definition 2.12. The value

Q(ω) =

∫
∂ω

qn dσ

is called a heat output into volume ω ⊂ Ω from the domain Ω\ω̄. Here n is a positive outward
drawn unit normal vector to the volume surface ∂ω.

Axiom 8 (of energy transfer). The power N(ω) getting by any volume ω ⊂ Ω is equal to

N(ω) = Ni(ω) +Ne(ω) +Q(ω) =

∫
∂ω

vpn dσ +

∫
ω

ρvf dω +

∫
∂ω

qn dσ.

Remark. This axiom fixes an assumption that we have no any mechanisms of the receiving
of energy by a volume ω ⊂ Ω.

Resume.
We can summarize the previous axioms and definitions as the following classical mathemat-

ical model of moving continuous media.
Mathematical model 1 (integral conservation laws).
In the moving continuous media for any moving volume ωt ⊂ Ωt and any moment of time t ∈ τ

the following equalities are hold:
d

dt
(

∫
ωt

ρ dω) = 0,

d

dt
(

∫
ωt

ρv dω) =

∫
∂ωt

pn dσ +

∫
ωt

ρf dω, (2.8)
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d

dt
(

∫
ωt

ρ(x× v) dω) =

∫
∂ωt

(x× pn) dσ +

∫
ωt

ρ(x× f) dω,

d

dt
(

∫
ωt

ρ(
v2

2
+ U) dω) =

∫
∂ωt

vpn dσ +

∫
ωt

ρvf dω +

∫
∂ωt

qn dσ.

Every of these equalities is called by ”conservation law” of the corresponding mechanical value:
conservation law of mass, conservation law of linear momentum, conservation law of angular
momentum, conservation law of energy.

Definition 2.13. (main definition of continuum mechanics). A moving continuous media
is an object satisfying the axioms A1-A8. A mathematical model consists of four conservation
laws.

2.8 Continuous motion

The main functions (magnitudes) related to a moving continuous medium: a density ρ, a specific
internal energy U , a velocity v, a stress pn, with a normal vector n, a density of heat output qn,
and a density of external body forces f , we will consider (further) in Eulerian description. It
means that these functions are functions of (x, t) in a domain W ⊂ R4(x, t). The magnitudes pn

and qn depend on unit vector n ∈ R3 (point of unit sphere S1) and therefore they are given on
the product W × S1.

At first we study a class of movements of continuous media where the main magnitudes are
sufficiently smooth functions.

Definition. A movement of continuous media is called continuous in a domain W if the
functions ρ, U, v, pn, qn are continuously differentiable functions in W , the functions pn, qn are
continuous in W × S1, and the function f is continuous in W .

Let us consider the derivative
d

dt

∫
ωt

ρF dω

where the vector-function F (x, t) is continuously differentiable and a movement of continuous
media is continuous. In order to calculate this value we do a transition to the Lagrange’s system
of coordinates x = γ(x, t). The integral has the form∫

ωt

ρ(x, t)F (x, t) dω =

∫
ωt0

ρ(ξ, t)F (ξ, t)J(ξ, t) dω0

By virtue of the theorem of Real analysis we can replace an integral and derivative and in the
strength of Euler’s formula, we obtain

∂

∂t
(ρ(ξ, t)F (ξ, t)J(ξ, t)) =

d

dt
(ρ(x, t)F (x, t)J(x, t)) = J [

d

dt
(ρ(x, t)F (x, t)) + ρ(x, t)F (x, t) divx(v)]

Hence,

d

dt

∫
ωt

ρ(x, t)F (x, t) dω =

∫
ωt

( d
dt

(ρ(x, t)F (x, t)) + ρ(x, t)F (x, t) divx(v)]
)
dω

For example, if F = 1, then

d

dt

∫
ωt

ρ(x, t) dω =

∫
ωt

( d
dt
ρ(x, t) + ρ(x, t) divx(v)

)
dω = 0.
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Because ωt is an arbitrary volume then by virtue of the lemma

d

dt
ρ+ ρ divx(v) = 0.

This equation is called a continuity equation. It is equivalent to the mass conservation law on
class of continuous motions.

The continuity equation allows simplifying

d

dt

∫
ωt

ρF dω =

∫
ωt

ρ
dF

dt
dω

2.9 Conservation of linear momentum.

By virtue of formula (2.8) the equation of linear momentum takes the form∫
∂ωt

pn dσ =

∫
ωt

ϕ dω

where ϕ = ρ(
dv

dt
− f) is continuous in Ωt.

Theorem. There exists a tensor field of second order P in W that for all (x, t) ∈ W

pn(x, t) = P (x, t) < n >

Proof. At a fixed point (x, t) ∈ W, (in fixed time t point x ∈ Ωt) the vector pn is a continuous
function p : n→ pn (we write pn = p(n)). We have to prove that this function is linear. Let {ei}
be an orthonormal basis in R3. Then n = nαe

α. For the proof of the theorem it is enough to
prove that

pn = nαpeα ,

because we can determine the tensor

P < n >= nαpeα

At first we prove that p−n = −pn or

p(−n) = −p(n).

Let Bε(x) ⊂ Ωt be ball at the point x ∈ Ωt with radius ε and Σ be plane with normal vector
n and passing through the point x. The ball Bε(x) is divided by this plane on two half-balls ω1

and ω2 : Bε(x) = ω1 ∪ ω2 with cross-section σε = ω1 ∩ ω2. We have the equalities∫
∂ω1

pn dσ =

∫
ω1

ϕ dω,

∫
∂ω2

pn dσ =

∫
ω2

ϕ dω,

∫
∂Bε

pn dσ =

∫
Bε

ϕ dω.

Because ∫
Bε

ϕ dω =

∫
ω1

ϕ dω +

∫
ω2

ϕ dω,

then we get ∫
σε

(pn + p−n) dσ = 0.
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By virtue of continuity of the function p and because ε is an arbitrary small parameter, we obtain

pn + p−n = 0.

Let a fixed vector n0 = n0
αe

α be with n0
α 6= 0. We consider the infinitesimal tetrahedron ∆ε,

whose vertex is at x with its three faces σεi
being parallel to the coordinate planes:

h1 =
ε

n0
1

, h2 =
ε

n0
2

, h3 =
ε

n0
3

Denoting σε slanted face of this tetrahedron with outward drawn normal n0, we have σεi
=

|n0
i |σε. We take height ε such that ∆ε ⊂ Ωt. Then

∂∆ε = σε ∪ σε1 ∪ σε2 ∪ σε3

and ∫
∂∆ε

pn dσ =

∫
σε

p(n0) dσ +
3∑

i=1

∫
σεi

pn dσ =

∫
∆ε

ϕ dω.

Because on the face σεi
we have n = ±ei (we take + if n0

i < 0 and −if n0
i > 0) we find∫

σε

p(n0) dσ +
3∑

i=1

∫
σεi

p(∓ei) dσ =

∫
∆ε

ϕ dω.

By virtue of continuity of the function p(n) and the Mean value theorem we have

σε px0(n
0) +

3∑
i=1

σεi
pxi

(∓ei) = ϕ(z) εσε

where x0 ∈ σε, xi ∈ σεi
, z ∈ ∆ε. Then

px0(n
0)−

3∑
i=1

n0
i pxi

(ei) = εϕ(z).

If ε→ 0, then x0 → x, xi → x. In the strength of continuity of the functions p and ϕ, we have

px(n
0)−

3∑
i=1

n0
i px(e

i) = 0.

If one or two coordinates of the vector n0 are equal to zero, then in the strength of continuity
of p(n) with respect to n we receive the proof of the theorem for all vectors n.

Definition. The tensor P is called a stress tensor.
Now let us consider the conservation law of linear momentum. Using Gauss-Ostrogradskii

theorem, we have ∫
∂ωt

pn dσ =

∫
∂ωt

P < n > dσ =

∫
ωt

div(P ) dω.

Hence, the equation of linear momentum is reduced to∫
ωt

(ρ
dv

dt
− div(P )− ρf) dω = 0.

For the continuous motion the integrand function is continuous. Since this equation is valid for
any volume ωt, then we get the differential form of the conservation law of linear momentum

ρ
dv

dt
= div(P ) + ρf.
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2.10 Conservation of angular momentum.

Let us consider the linear transformation E : R3 → L(R3), which is defined by the formula

E(a) =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 ,

where a = aie
i is a vector, {ei} is an orthonormal basis. We have

E(a) < b >= a× b = −E(b) < a > .

If we use Gauss-Ostrogradskii theorem and x× P < n >= (E(x) ◦ P ) < n > we get∫
∂ωt

x× P < n > dσ =

∫
∂ωt

(E(x) ◦ P ) < n > dω =

∫
ωt

div(P ◦ E(x)) dω.

The angular momentum equation is reduced to∫
ωt

(ρ(x× dv

dt
)− div(E(x) ◦ P )− ρx× f) dω = 0

or the differential form has the form

ρ(x× dv

dt
) = div(E(x) ◦ P ) + ρx× f.

If we substitute in this equation the value ρdv
dt

being found from the linear momentum equation
we obtain

div(E(x) ◦ P ) = x× div(P ). (2.9)

Theorem. Equation (2.9) is fulfilled if and only if the second order tensor P is a symmetric
tensor, i.e., P ∗ = P .

Proof. The following chain of equalities are fair with an arbitrary constant vector (test vector)
a

a div(E(x) ◦ P ) = div((E(x) ◦ P )∗ < a >) = −div(P ∗ ◦ E(x) < a >) =

= −tr( ∂
∂x

(P ∗ ◦ E(x)) < a >) = −E(x) < a > div(P )− tr(P ∗ ◦ ∂

∂x
(E(x) < a >)) =

= a(x× div(P )) + tr(P ∗ ◦ ∂

∂x
(E(a) < x >)) = a(x× div(P )) + tr(P ∗ ◦ E(a)).

Hence,

tr(P ∗ ◦ E(a)) = 0

for arbitrary test-vector a. Because

tr(P ∗ ◦ E(a)) = tr((P ∗ ◦ E(a))∗) = tr(E(a)∗ ◦ P ) = −tr(E(a) ◦ P ) = −tr(P ◦ E(a))

we have

2tr(P ∗ ◦ E(a)) = tr(P ∗ ◦ E(a))− tr(P ◦ E(a)) = 0

or we can rewrite

tr((P ∗ − P ) ◦ E(a)) = 0.
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For the tensor (P ∗ − P ) there exists a vector c such that

E(c) = P ∗ − P.

Therefore
tr(E(c) ◦ E(a)) = −2ca = 0.

By virtue of arbitrariness of the vector a the vector c is equal to 0, it means that E(c) = 0 or

P ∗ − P = 0.

Conversely, let P ∗ = P , then tr(P ∗ ◦ E(a)) = 0 and therefore (2.9).
This theorem means that for any continuous motion a conservation law of angular momentum

is equivalent to symmetry of the stress tensor P .

2.11 Conservation law of energy.

For a continuous motion the conservation law of energy is reduced to the equation∫
∂ωt

qn dσ =

∫
ωt

ψ dω

where ψ = ρ d
dt

(1
2
v2 +U)−div(P < v >)− ρvf . This equation can be used for a proof of existence

of a heat output rate vector (heat flux).
Theorem. For a continuous motion in W , there exists a vector field q in W that for all

(x, t) ∈ W
qn(x, t) = −q(x, t) n

Proof is the same as in the theorem of existence of the tensor P .
Exercise. Prove this theorem.
Definition. Vector q is called a heat output rate vector (or heat flux).
Introducing the heat output rate vector allows transforming a surface integral into the volume

integral: ∫
∂ωt

qn dσ = −
∫

∂ωt

qn dσ = −
∫

ωt

div(q) dω.

The conservation law of energy becomes∫
ωt

(ψ + div(q)) dω = 0.

By virtue of continuity of motion and arbitrariness of a material volume ωt, we obtain ψ+div(q) =
0 or

ρ
d

dt
(
1

2
v2 + U) = div(P < v >) + ρvf − div(q).

We simplify this equation by using the relationships

P :
∂v

∂x
=

1

2
P : (

∂v

∂x
+ (

∂v

∂x
)∗),

d

dt
(
1

2
v2) = 2v

d

dt
v, div(P < v >) = v div(P ) + P : D,

where D is a rate-of-strain tensor

2D =
∂v

∂x
+ (

∂v

∂x
)∗
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Substituting ρ
dv

dt
from the differential form of the linear momentum conservation law (equation

of motion) we find

ρ
dU

dt
= P : D − div(q).

This equation is called an energy equation (or heat flux equation).
Resume.
For arbitrary continuous motion of continuous media described by model M1, there exist

continuously differentiable fields of symmetric stress tensor P and a vector of heat output rate
with which the integral conservation laws are equivalent to the system of differential equations

dρ

dt
+ ρ div(v) = 0,

ρ
dv

dt
= div(P ) + ρf,

ρ
dU

dt
= P : D − div(q).

This system of partial differential equations is called a model of continuous motion of continuum
mechanics. If we assume that the body force is prescribed, then the model M2 consists of five in-
dependent (scalar) equations involving fourteen unknown variables, namely, ρ, v, P, U, q. A model
is called ”closed” if a number of unknown variables is equal to the number of equations in the
model. And so, we have a problem of closing the model M2. This problem has to be solved on
the basis of an additional information about continuous media.

2.12 Invariants of stress tensor

Let us consider eigenvalues λ and eigenvectors l of the linear transformation P :

(P − λI) < l >= 0.

Because l 6= 0 then we receive characteristic equation (secular equation)

det(P − λI) = −λ3 + J1λ
2 − J2λ+ J3,

where Jk(P ) are invariants of stress tensor:

J1(P ) = tr(P ) = σ1 + σ2 + σ3,

J2(P ) =
1

2
[(tr(P ))2 − tr(P 2)] = σ1σ2 + σ2σ3 + σ1σ3 − τ 2

12 − τ 2
23 − τ 2

13,

J3(P ) = det t(P ).

By virtue of symmetry of stress tensor (P ∗ = P ) a characteristic equation always has three real
roots: σI , σII , σIII .

Definition. The roots of characteristic equation are called principal stresses. Directions of
eigenvectors corresponding to these eigenvalues are called principal axes.

For the symmetric matrix we always can take orthonormal basis which consists of the eigen-
vectors. This basis {ei} is called principal basis of tensor P . In this basis the stress tensor is a
diagonal tensor with principal stress values on the main diagonal:

P =

 σI 0 0
0 σII 0
0 0 σIII

 .
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In the terms of the principal stresses, the stress invariants may be written:

J1(P ) = σI + σII + σIII ,

J2(P ) = σIσII + σIIσIII + σIσIII ,

J3(P ) = σIσIIσIII .

Example. The components of the stress tensor at x are given in MPa with respect to axes
x1, x2, x3 by the matrix

[P ] =

 57 0 24
0 50 0
24 0 43


Determine the principal stresses and the principal stress directions at x.

Solution. For the given stress tensor, secular equation takes the form of the determinant

det

 57− λ 0 24
0 50− λ 0
24 0 43− λ

 = 0

which, upon cofactor expansion about the first row, results in the equation

(57− λ)(50− λ)(43− λ)− (24)2(50− λ) = 0

or in its readily factored form

(50− λ)(λ− 25)(λ− 75) = 0

Hence, the principal stress values are σI = 25, σII = 50, σIII = 75. Note that we confirm that
the first stress invariant,

J1 = 57 + 50 + 43 = 25 + 50 + 75 = 150

To determine the principal directions, we first consider σI = 25, for which Eq 3.6-3 provides
three equations for the direction cosines of the principal direction l1 = (l11, l

1
2, l

1
3) of σI = 25,

namely,

32l11 + 24l13 = 0, 25l12 = 0, 24l11 + 18l13 = 0.

Obviously, l12 = 0 from the second of these equations, and from the other two, l13 = −4l11/3 so
that, from the normalizing condition l1αl

1
α = 1, we see that (l11)

2 = 9/25, which gives l11 = ±3/5
and l13 = ∓4/5.

Next, for σII = 50, Eq 3.6-3 gives,

77l21 + 24l23 = 0, 24l21 − 7l23 = 0,

which are satisfied only by l21 = l23 = 0. Then from l2α, l
2
α = 1, l22 = ±1. Finally, for σIII=75, Eq

3.6-3 gives

−18l31 + 24l33 = 0, −25l32 = 0, 24l31 − 32l33 = 0.

Here from the second equation l32 = 0 and from either of the other two equations 4l33 = 3l31, so
that from l3αl

3
α = 1 we have l31 = ±4/5 and l33 = ±3/5.
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2.13 Special cases of the stress state.

2.13.1 Octahedral stress

The stress when n = ± 1√
3
(1, 1, 1) in the principal axes is called octahedral stress. For this unit

normal we have

pn = nP < n >=
1

3
(σI + σII + σIII) =

1

3
J1(P ),

(poct
τ )2 ≡ p2

τ = (P < n >)2 − (pn)2 =
1

3
[(σ2

I + σ2
II + σ2

III)− (σI + σII + σIII)
2] =,

=
1

9
[(σI − σII)

2 + (σII − σIII)
2 + (σIII − σI)

2] =
2

9
[J2

1 (P )− 3J2(P )].

Octahedral stress plays a prominent role in the plastic theory.

2.13.2 The uniaxial state of stress.

The uniaxial state of stress is that for which only one principal stress component is different than
zero (for example, σII = σIII = 0. Then in the principal axes:

[P ] =

 σI 0 0
0 0 0
0 0 0

 , J1(P ) = σI , J2(P ) = J3(P ) = 0.

2.13.3 Simple shear (pure shear).

The state of simple shear is called such stress state when σI + σII = 0, σIII = 0. Then normal
stress on the plane with unit normal vector n = 1√

2
(1,±1, 0) in the principal axes is equal to zero

(pn = 0). On these planes we have a maximum of shear stress called octahedral stress. For this
unit normal we have the principal axes:

pτ =
σI√
2
(1,±1, 0).

2.13.4 Spherical stress state.

The stress state with σI = σII = σIII is called spherical stress state. For the spherical stress state
for all planes. For this stress state we have in the principal axes:

pn = σI , pτ = 0.

2.13.5 Plane stress.

In plane stress, all stress components are parallel to one plane. If we choose basis vectors {ei}
such that direction of vector e3 coincides with third principal axis and σIII = 0, then the matrix
representation of stress tensor is:

[P ] =

 σ11 σ12 0
σ21 σ22 0
0 0 0


and the stress vector lies on the plane with basis {e1, e2}. The characteristic equation for the
plane stress state is

λ3 − J1(P )λ2 + J2(P )λ = λ(λ2 − J1(P )λ+ J2(P )) = 0.
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2.13.6 The deviatoric stress tensor.

The stress state at a place in a continuum body can be decomposed into components called the
spherical and deviator stress tensors. If we denote a value

p =
1

3
σii =

1

3
J1(P ),

(which is called mean normal stress) then

P ′ = P − pI

is called deviator stress tensor. For it the first invariant J1(P
′) = 0. Others invariants are

J2(P
′) = σ2

kk − J2(P ) =
3

2
(poct

τ )2,

J3(P
′) = J3(P )− 1

3
σkkJ2(P ) +

2

3
σ3

kk.

2.14 Deformation

In continuum mechanics material bodies consisting of particles (material points) are studied. Any
change of a material volume Ωt0 → Ωt is the result of a displacement of the points of the body.
The change in size or shape, or possibly both is called a deformation. A movement of material
volume is described by the homeomorphism γt : Ωt0 → Ωt (see Axiom 3). Let us suppose that γt

and (γt)
−1 are continuously differentiable in the neighborhood of some particle ξ ∈ Ωt0 .

Definition 2.14. The vector

w = x− ξ = γ(ξ, t)− ξ

is called a displacement vector of the particle ξ.
Let us consider two neighbor particles of the body situated at the point ξ and ξ + dξ in the

initial undeformed configuration Ωt0 . Under the displacement these particles move to the positions
x = γt(ξ) and x+ dx in the deformed configuration Ωt. For the value of dx one has

dx = T < dξ >,

where the tensor T =
∂x

∂ξ
is called a deformation gradient tensor or simply the deformation

gradient. The tensor T characterizes a local deformation at ξ. For describing motions we use
several measures of deformation. First let us consider the measure based on the change during
the deformation the following magnitude:

(dx)2 − (dξ)2 = (T < dξ >)(T < dξ >)− (dξ)2 = dξ((T ∗ ◦ T − I) < dξ >)

The symmetric tensor
2ε̂ = T ∗ ◦ T − I

is called a Lagrangean finite strain tensor. The difference (dx)2 − (dξ)2 may also be developed in
terms of spatial (Eulerian) variables

(dx)2 − (dξ)2 = (dx)2 − (T−1 < dx >)(T−1 < dx >) = dx (I − (T ∗−1 ◦ T−1) < dx >),
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where the symmetric tensor

2ε = I − T ∗−1 ◦ T−1 = 2T ∗−1 ◦ ε̂ ◦ T−1

is called the Eulerian finite strain tensor.
Another measure of the deformation is a change of the angle between two elements dξ and d1ξ:

dx · d1x = T < dξ > T < d1ξ >= dξ (T ∗ ◦ T ) < d1ξ >= dξ (2ε̂+ I) < d1ξ >

or

dξ · d1ξ = T−1 < dx > ·T−1 < d1x >= dx · ((T ∗−1 ◦ T−1) < d1x >) = dx · ((I − 2ε) < d1x >).

These finite strain tensors may also be expressed in terms of the displacement gradient ∂w
∂ξ

:

2ε̂ = (I +
∂w

∂ξ
)∗(I +

∂w

∂ξ
)− I = (

∂w

∂ξ
)∗ +

∂w

∂ξ
+ (

∂w

∂ξ
)∗ ◦ ∂w

∂ξ
,

2ε = 2T ∗−1 ◦ ε̂ ◦ T−1 = T ∗−1(T ∗ ◦ (
∂w

∂x
)∗ +

∂w

∂x
◦ T + T ∗ ◦ (

∂w

∂x
)∗
∂w

∂x
◦ T )T−1.

Since

T = I +
∂w

∂ξ
,
∂w

∂ξ
=
∂w

∂x
◦ T,

then

T−1 = I − ∂w

∂x

and
2ε = (∂w

∂x
)∗T−1 + T ∗−1 ∂w

∂x
+ (∂w

∂x
)∗ ∂w

∂x
=

= (∂w
∂x

)∗(I − ∂w
∂x

) + (I − ∂w
∂x

)∗ ∂w
∂x

+ (∂w
∂x

)∗ ∂w
∂x

=
= (∂w

∂x
)∗ + ∂w

∂x
− (∂w

∂x
)∗ ∂w

∂x
.

The strain tensors in terms of Lagrangean or Eulerian components are symmetric second order
tensors. Moreover eigenvalues of the tensor T ∗ ◦ T are positive. In fact, let a vector l 6= 0 be an
eigenvector of the tensor T ∗ ◦ T , which corresponds to an eigenvalue λ:

T ∗ ◦ T < l >= λ l.

Hence,
λ(l, l) = l(T ∗ ◦ T < l >) = (T < l >)2 > 0.

The principal axes of T ∗◦T and ε̂ coincide, and their eigenvalues, denoted by λi and εi, are related
with the formulae

λi = 1 + 2εi, (i = 1, 2, 3).

Therefore the eigenvalues of a strain tensor satisfy the conditions

εi > −1

2
.

The principal axes of tensor ε̂ are called principal axes of deformation, and eigenvalues εi are
called principal strains.

If a strain tensor is equal to zero, then the length of the element dξ is unchanged, and the
angle between any two elements dξ and d1ξ will also be unchanged. Thus in the absence of strain
only a rigid body displacement can occur.
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Theorem. In any continuum media (for continuous motion) density ρ only depends on in-
variants of a Lagrangean finite strain tensor

ρ =
ρ0√

1 + 2J1(ε̂) + 4J2(ε̂) + 8J3(ε̂)

where ρ0 = ρ(x, t0).
Proof. From the continuity equation one has

dρ

dt
= −ρdiv(v).

by virtue of the Euler’s formula we obtain

dρJ

dt
= J

dρ

dt
+ ρ

dJ

dt
= 0.

It means that
Jρ = ρ0(ξ).

Because J = det(T ) and T ∗ ◦ T = 2ε̂+ I, then

det(T ∗ ◦ T ) = det(T ∗) det(T ) = det(T )2 = det(2ε̂+ I) = 8 det(ε̂+
1

2
I) =

= 8 det(ε̂− λI)|λ=− 1
2

= 8(−λ3 + J1(ε̂)λ
2 − J2(ε̂)λ+ J3(ε̂))|λ=− 1

2

= 1 + 2J1(ε̂) + 4J2(ε̂) + 8J3(ε̂).

or
J =

√
1 + 2J1(ε̂) + 4J2(ε̂) + 8J3(ε̂).

2.15 Elements of mathematical thermodynamics

Thermodynamics studies relations between the heat energy and other kinds of energies and gives
rules of reciprocal conversion of one kind of energy into another. For example, if a body is heated,
then strains and stresses are developed. Conversely, if a body is strained rapidly, then heat is
generated inside the body.

The main notion of thermodynamics is a notion of a physical body state. Phenomenological
description of the state is given with the help of various functions called state variables. For
example, introduced before the density ρ (or specific volume τ = 1/ρ), the internal energy U are
parameters of the state of continuous medium. Also absolute temperature θ > 0, specific entropy
η and pressure p are basic state variables.

Let z = (z1, z2, ..., zk) be a set of main state variables of continuous medium: other state
variables are functions of these variables. Such medium is called k–parameter medium. In the
space of state variables a change of variables from one state z(1) to another state z(2) are separated
out. These changes are called processes. If for a process from z(1) into z(2) there exists, process
from z(2) into z(1), then such process is called reversible, otherwise it is called irreversible. The
state variables are obeyed the first and the second laws of thermodynamics.

The first law of thermodynamics may be stated as follows: the time rate of change of kinetic
energy and internal energy in a body is equal to the rate of work done on the body plus the
changes in all other energies, such as heat, magnetic, electrical, and chemical, per unit time or

d

dt
(Ek + Ei) = (Ni +Ne) +Q+

∑
α

Nα.
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In absence of the energies Nα other than those due to mechanical power (Ni + Ne) and heat Q,
we write the conservation law of energy.

The second law of thermodynamics is based on the concept of entropy associated with irre-
versible thermodynamic processes. The entropy is regarded as a measure of change of energy
dissipation with respect to temperature.

We define an entropy S as an additive continuously differentiable function

S =

∫
ω

ρη dω,

where η is an entropy density per unit mass. Furthermore, the total entropy production B is
defined by:

B =
dS

dt
+

∫
∂ω

(
q

θ
)n dσ −

∫
ω

ρ(
h

θ
) dω ≥ 0. (2.10)

This expression is referred as the second law of thermodynamics in continuum mechanics, which
states that the total entropy production is always greater than or equal to zero. This is also known
as the Clausius-Duhem inequality. We may rewrite equation (2.10) as∫

ω

[ρ
dη

dt
+∇(

q

θ
)− ρ(

h

θ
)] dω ≥ 0.

or

ρθ
dη

dt
+∇ · q − 1

θ
q · ∇θ − ρh ≥ 0,

which is a local form of the Clausius-Duhem inequality. The value

Φ = ρθ
dη

dt
− ρh+ div(q)

is called an internal dissipation. Therefore, the second thermodynamics law states

Φ− 1

θ
q · ∇θ ≥ 0. (2.11)

The product (−θη) is the irreversible heat energy due to entropy as related to temperature, with
the negative sign indicating that compressive reaction results from thermal expansion (temperature
rise) in a restrained body. The sum of internal energy U and irreversible heat energy (−θη) is
known as a Helmholtz free energy F = U − θη. Substituting it into the energy equation, one
obtains

ρ
dF

dt
= P : D − ρη

dθ

dt
− Φ.

Remark. For any irreversible process we count Φ > 0, whereas Φ = 0 is for a reversible
process.

Remark. Here we added the additional term
∫

ω
ρh dω, in which h is the heat supply per unit

mass. Before this consideration we studied (see Axiom 7) that (h = 0)

Q =

∫
∂ω

qn dσ.

Axiom 9 (thermodynamics axiom). For continuous medium are fair the first and the second
laws of thermodynamics.

Because condition (2.11) takes place for irreversible and reversible processes, then we must
choose heat flux such that

−1

θ
q · ∇θ ≥ 0.
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For example, the Fourier heat conduction law states that

q = −κ∇θ,

where κ is a new state variable, which is called a coefficient of heat conductivity.
Axiom 10 (Fourier’s axiom). A heat flux is proportional to gradient of temperature.
A coefficient of heat conductivity κ is always positive. In the models of continuum mechanics

it is considered as a known function of other state variables. Therefore, the energy equation has
the form

ρ
dU

dt
= P : D + div(κ∇θ).

2.15.1 Ideal continuous media

For ”ideal” continuous media it is supposed that the stress tensor P is a spherical tensor

P = −pI,

here p is called a pressure. State variables of ”ideal” continuous medium are defined by five state
variables

ρ =
1

τ
, U, θ, η, p.

Because the stress tensor is a spherical tensor, then for any reversible process one has

θdη = dU + pdτ. (2.12)

This equality is called the main thermodynamics identity.
Let us consider two–parameter ideal continuous medium. Between five state variables from

equation (2.12) one can obtain two equations. For example, if one take τ and η as the main state
variables, then other variables are functions of τ and η:

U = U(τ, η), θ = θ(τ, η), p = p(τ, η).

Substituting these functions into the main thermodynamical identity, we get

θdη = Uτdτ + Uηdη + pdτ.

In this identity dτ and dη are arbitrary. Hence,

θ = Uη(τ, η), p = −Uτ (τ, η).

For full description of thermodynamical state it is enough to have the function U = U(τ, η).
Such functions are called constitutive equations. As usual these equations are obtained from the
physical experiments.

In continuum mechanics very often we use the following constitutive equations:
(a) the internal energy U is a function of the state variables τ and η: U = U(τ, η);
(b) the heat content (enthalpy) i = U + pτ is a function of the state variables p and η:

U + pτ = i(p, η);
(c) the free energy F = U − θη is a function of the state variables τ and θ: U − θη = F (τ, θ);
(d) the thermodynamical potential ψ = U − θη + pτ is a function of the state variables p and

θ: U − θη + pτ = ψ(p, θ).
Remark. The main thermodynamical identity has another representation

θ η· = U · + p τ ·.
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Exercises. Find two equations for the cases (a)–(d).
Answers.
(b) θ = iη(p, η), τ = ip(p, η);
(c) η = −Fθ(τ, θ), p = −Fτ (τ, θ);
(d) τ = ψp(p, θ), η = −ψθ(p, θ).

2.16 Fluids

Definition. Fluid or gas is such continuous media in which the stress tensor P is a function
of rate-of-strain tensor D. Also the stress tensor depends on the thermodynamic state variables
Π = (ρ, U, θ, η, p) and coordinates x and time t

P = F (D,Π, x, t).

Concretization of the function F is formulated in the Stokes axioms.
Axiom (Stokes). For fluids and gases are valid.
10. The form of F does not depend either on position in space or on time (medium is homo-

geneous):
P = F (D,Π).

20. The function F (D,Π) is a continuous symmetric function of rate-of-strain tensor D
(medium is isotropic).

30. If D = 0, then medium is ”ideal”:

F (0,Π) = −pI

By virtue of the theorem and the property 20 one obtains

P = αI + βD + γD2,

where the coefficients α, β, γ are functions of invariants of the tensor D and also thermodynamic
state variables.

Axiom (state). Fluids and gases are two-parameter media for which the main thermodynamic
identity

θdη = dU + pdτ

takes place. The coefficient of heat conductivity κ is a known function of the state variables. For
example, κ = κ(ρ, η).

For a closure of system of equations, which describe a motion of fluids and gases one has to
know the functions

α = α(J(D), ρ, η), β = β(J(D), ρ, η), γ = γ(J(D), ρ, η),

where J(D) = (J1(D), J2(D), J3(D)). We obtain a closed model of fluid or gas

dρ

dt
+ ρdiv(v) = 0,

ρ
dv

dt
= div(P ) + ρf,

ρ
dU

dt
= P : D + div(κ∇θ),
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where P = αI + βD + γD2. From the Stokes axioms we only have

α(0, ρ, η) = −p,

the others we have to obtain from experimental data or we have to take additional assumptions.
Concretization of this model requires huge experimental data. Therefore this model is not

applied in practice.
Besides noted postulates, Stokes further assumed that P is a linear function of D.
Axiom. The function F (D,Π) is a linear function of D.
From this axiom we have γ = 0 and β does not depend on invariants of a rate-of-strain tensor

D. Because only invariant J1(D) is a linearly dependent, then the function is a linear function of
J1(D):

α = −p+ λJ1(D), β = 2µ.

The scalar invariants λ and µ depend on the thermodynamic state variables and they are called
the first and the second coefficients of viscosity, respectively. Hence, the stress tensor is

P = −pI + λdiv(v) + 2µD.

Sometimes it is useful to define the quantity

µ′ = λ+
2

3
µ,

which is called a bulk coefficient of viscosity.
After substituting the representation of the stress tensor P into equations of fluid, one has

div(P ) = −∇p+∇(λdiv(v)) + div(2µD),

P : D = −pdiv(v) + Φ,

where Φ = λ(div(v))2 + 2µD : D = (λ + 2
3
µ)(div(v))2 + 2µD′ : D′, and D′ is a deviatoric of

strain-of-rate tensor:

D′ = D − 1

3
div(v)I.

The function Φ is called a dissipation function. The second law of thermodynamics gives

Φ +
κ

θ
(∇θ)2 ≥ 0.

Because Φ does not depend on ∇θ, we have to require that Φ ≥ 0.
Let us consider the conditions under which Φ is always nonegative, i.e., Φ ≥ 0. We rewrite the

value of the function Φ in the principal axes of the rate-of-strain tensor:

D = O

 d1 0 0
0 d2 0
0 0 d3

O∗,

where O is an orthogonal transformation. In this matrix representation we have

Φ = λ(J1(D))2 + 2µOikdkOlkOiβdβOlβ = λ(J1(D))2 + 2µδkβdkδkβdβ =

= λ(d1 + d2 + d3)
2 + 2µ(d2

1 + d2
2 + d2

3)
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=
1

3
[(3λ+ 2µ)(d1 + d2 + d3)

2 + 2µ((d1 − d2)
2 + (d2 − d3)

2 + (d3 − d1)
2)].

If Φ ≥ 0 for all tensors D, then we obtain

3λ+ 2µ ≥ 0, µ ≥ 0.

For real fluids these inequalities must always be satisfied.
Assume that η and ρ (or τ) are the main thermodynamical state variables, then from the main

thermodynamical identity we have

ρ
dU

dt
= ρθ

dη

dt
− pdiv(v)

and then the energy equation has the form

ρθ
dη

dt
= div(κ∇θ) + Φ.

If λ, µ, κ and U are known functions of two parameters ρ and η, then we obtain the closed
model of fluid dynamics

dρ

dt
+ ρdiv(v) = 0, ρ

dv

dt
= −∇p+∇(λdiv(v)) + div(2µD) + ρf, (2.13)

ρθ
dη

dt
= div(κ∇θ) + Φ.

θ =
∂U

∂η
, p = ρ2∂U

∂ρ
.

This model is called a model of a viscous compressible gas.

2.16.1 Partial models of fluids and gases.

Viscous incompressible flow equations

Definition. Fluid flow for which the density remains constant are called incompressible flows.
For the incompressible flows

dρ

dt
= 0.

From the continuity equation we have
div(v) = 0.

Axiom (incompressibility). For incompressible flows (ρ = const), the second coefficient of
viscosity is constant and does not depend on temperature.

In this case we find

div(2µD) = 2µdiv(D) = µ(div(
∂v

∂x
) + div((

∂v

∂x
)∗)).

Let us simplify the expressions div( ∂v
∂x

) and div(( ∂v
∂x

)∗):

a · div((∂v
∂x

)∗) = tr(
∂

∂x
(
∂v

∂x
< a >)) =

∂

∂xα

(
∂vα

∂xβ

aβ) = aβ
∂2vα

∂xα∂xβ

=

= aβ
∂

∂xβ

(
∂vα

∂xα

) = aβ(
∂

∂xβ

div(v)) = a · ∇div(v)
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a · div(∂v
∂x

) = tr(
∂

∂x
((
∂v

∂x
)∗ < a >)) = tr(

∂

∂x
(
∂aαvα

∂x
)) =

∑
β

∂2

∂x2
β

(vαaα) =

= aα

∑
β

∂2vα

∂x2
β

= a ·∆v,

or
div(2µD) = µ(∇div(v) + ∆v).

Therefore, we have

div(v) = 0, (2.14)

dv

dt
+

1

ρ
∇p = ν∆v + f,

where ν = µ/ρ is constant (it is called a kinematic viscosity). In this system of equations we have
unknown only v and ρ. These equations are called the Navier-Stokes equations.

It is remarkable that thermodynamic does not participate in this model. The energy equation

dθ

dt
=

1

ρcv
div(κ∇θ) + Φ′,

can be solved afterwards. Here

Φ′ =
2ν

cv
D′ : D′,

and cv is a known function of temperature.
Axiom (of ideal fluid). For ideal fluids the coefficient of kinematic viscosity is equal to zero

ν = 0.
In this case the system of equations (2.14) becomes simpler

div(v) = 0,

dv

dt
+

1

ρ
∇p = f.

This system is called the Euler equations. For the Euler equation the energy equation has the
form (Φ′ = 0):

dθ

dt
=

1

ρcv(θ)
div(κ∇θ).

If κ and cv are constant functions, then we obtain the classical heat equation (k = κ/(ρcv))

dθ

dt
= k∆θ.

Equations of ideal gas (Euler’s equations)

Equations of inviscid (nonviscous) flow, originally derived by Euler, can directly be obtained from
(2.13) by setting λ, µ and κ equal to zero.

Axiom (of an ideal gas). For an ideal gas

λ = 0, µ = 0, κ = 0.

In this case the system of gas dynamics equations is

dρ

dt
+ ρdiv(v) = 0, ρ

dv

dt
+∇p = ρf,
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dη

dt
= 0, p = p(ρ, η).

Flow in which p can be expressed as a function of ρ is said to be barotropic. For barotropic
flows the system of equations is separated on two parts

dρ

dt
+ ρdiv(v) = 0,

dv

dt
+∇F (ρ) = f,

and
dη

dt
= 0, p = p(ρ),

where F (ρ) =
∫

dp
ρ
. This system of equations is called a system of a barortopic gas.

2.17 Elastic solids.

Definition. Continuous media in which the stress tensor P is a function of the finite Lagrangian
strain tensor ε̂ are called solids.

Definition. In elastic solids thermodynamical processes are reversible ones. Thermodynamics
state variables are θ and finite Lagrangian strain tensor ε̂. The others state parameters are
connected with ε̂ and θ by additional axioms.

Because in elastic solids thermodynamical processes are reversible ones than

Φ ≡ ρθη· + div(q) = 0.

Axiom (of reversible process). In elastic solids there is equality

ρθη· + div(q) = 0.

Then the equation of conservation law we can rewrite as following

ρ
dU

dt
− P : D + divx(q) = ρ

dU

dt
− P̂ :

∂ε̂

∂t
+ divx(q),

where P = T ◦ P̂ ◦ T ∗ and because

P : D = P̂ :
∂ε̂

∂t

Really:

2
∂ε̂

∂t
=
∂T ∗

∂t
◦ T + T ∗ ◦ ∂T

∂t
= (

∂v

∂ξ
)∗ ◦ T + T ∗ ◦ ∂v

∂ξ
=
∂T ∗

∂t
◦ T + T ∗ ◦ ∂T

∂t
=

= (
∂v

∂x
◦ T )∗ ◦ T + T ∗ ◦ (

∂v

∂x
◦ T ) = 2T ∗ ◦D ◦ T,

Then

ρ
∂F

∂t
= P̂ :

∂ε̂

∂t
− ρη

∂θ

∂t
− Φ.

with Helmholtz free energy F = U − θη .
Axiom. Free energy F of elastic solid is a function only θ and ε̂. Free energy F = F (θ, ε̂) is

isotropic scalar function of ε̂. After substitution in the energy equation we get

ρ
∂F

∂t
= ρ

∂F

∂ε̂
:
∂ε̂

∂t
+
∂F

∂θ

∂θ

∂t
= ρ

∂F

∂t
= P̂ :

∂ε̂

∂t
− ρη

∂θ

∂t
.
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If we compare left and right side we have

ρ
∂F

∂ε̂
= P̂ ,

∂F

∂θ
= −η.

Lemma. Stress tensor P̂ is isotropic tensor function of ε̂.
Proof. Let F ′ be derivative ∂F

∂bε
. We have to show that for arbitrary orthogonal transformation

O we get
F ′(Oε̂O∗) = OF ′(ε̂)O∗.

Let ε = Oε̂O∗, then, because F (Oε̂O∗) = F (ε̂) and (by definition of derivative)

F (ε̂+ A)− F (ε̂) ∼= F ′(ε̂) : A, F (ε+OAO∗)− F (ε) ∼= F ′(ε) : (OAO∗)

F ′(ε̂) : A = F ′(ε) : (OAO∗)

B : (OAO∗) = tr(B∗OAO∗) = tr(OO∗B∗OAO∗) = tr(O∗B∗OA) = (O∗BO) : A.

By virtue of arbitrariness of A we get

F ′(ε̂) = O∗F ′(ε)O

or
OF ′(ε̂)O∗ = F ′(Oε̂O∗)

Now we are ready to rewrite all equations. We will use following relationships

divx(P ) = divξ(T P̂ )− T P̂T ∗ < divξ(T
∗−1) >

divx(q) = divξ(T
−1 < q >)− q · divξ(T

∗−1), ∇xθ = T ∗−1 < ∇ξθ > .

Proof. 10.

a · divx(P ) = tr(
∂

∂x
P < a >) = tr((

∂

∂ξ
P < a >)T−1) = tr(T−1(

∂

∂ξ
P < a >)) =

= tr(
∂

∂ξ
(T−1P < a >))− tr(

∂T−1 < b >

∂ξ |b=P<a>

) =

a · divξ(T
−1P )∗ − divξ(T

∗−1) · P < a >= a · (divξ(PT
∗−1)− P < divξ(T

∗−1) >=

= a · (divξ(T P̂ )− T P̂T ∗ < divξ(T
∗−1) >).

20.

divx(q) = tr(
∂q

∂x
) = tr(

∂q

∂ξ
T−1) = tr(T−1∂q

∂ξ
) = tr(

∂

∂ξ
(T−1 < q >))− tr(

∂T−1 < b >

∂ξ |b=q

) =

= divξ(T
−1 < q >)− q · divξ(T

∗−1).

30.

a · ∇xθ = a · (∂θ
∂x

) =
∂θ

∂ξ
· T−1 < a >= a · T ∗−1 < ∇ξθ > .

Let us consider x = γ(ξ, t) = w(ξ, t) + ξ then

T =
∂w

∂ξ
+ I, 2ε̂ =

∂w

∂ξ
+ (

∂w

∂ξ
)∗ + (

∂w

∂ξ
)∗
∂w

∂ξ
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Now we have

ρ
∂2w

∂t2
= divξ(T P̂ )− T P̂T ∗ < divξ(T

∗−1) > +ρf.

ρθ(
∂2F

∂ε̂∂θ
:
∂ε̂

∂t
+
∂2F

∂θ2

∂θ

∂t
) = −divξ(T

−1 < q >) + q · divξ(T
∗−1),

where q = −κT ∗−1 < ∇ξθ >, P̂ = α∗I + β∗ε̂+ γ∗ε̂
2, ρ = ρ0(1 + 2J1(ε̂) + 4J2(ε̂) + 8J3(ε̂))

−1/2.

Axiom. There exist ”natural” state of elastic solid in which

P = 0, ε̂ = 0, θ = θ0(= const).

2.17.1 Linear theory of elasticity.

Assumptions:

(a) (geometrically linear solids) :

small: w and all derivatives of w are small: they have the same order.

(b) (physically linear solids):

P̂ is linear and homogeneously depends of ε̂ and (θ − θ0) .

(c) (physically linear solids):

T and
eθ
θ0

have the same order of smallness.

Some manipulations:

2ε̂ =
∂w

∂ξ
+ (

∂w

∂ξ
)∗ + (

∂w

∂ξ
)∗
∂w

∂ξ
≈ ∂w

∂ξ
+ (

∂w

∂ξ
)∗

ε̂ ≈ ε, P̂ ≈ P,

α∗ = α∗(θ̃, J1(ε̂), J2(ε̂), J3(ε̂)) ≈ α0
∗ + α1

∗θ̃ + α2
∗J1(ε̂) + α3

∗J2(ε̂) + α4
∗J3(ε̂)

Because

P = 0, ε̂ = 0, θ = θ0(= const)

then α0
∗ = 0and

P = (−σθ̃ + λJ1(ε̂))I + 2µε̂,

where σ, λ, µ are constants.

ρ = ρ0(1− J1(ε̂)),

ρ0
∂2w

∂t2
= −σ∇ξθ̃ + λ∇ξJ1(ε) + µdivξ(2ε) + ρ0f.

ρ0c0
∂θ̃

∂t
= κ0∆ξθ̃ − σ

∂J1(ε)

∂t
.

But

J1(ε) = divξ(w), divξ(2ε) = divξ(
∂w

∂ξ
+ (

∂w

∂ξ
)∗) = ∆ξw +∇ξ(divξ(w)),

because

divξ(
∂w

∂ξ
) = ∆ξw, divξ((

∂w

∂ξ
)∗) = ∇ξ(divξ(w)).
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2.18 Shock relations

It is well-known experimental fact that in a real continuum media there exist surfaces, formed
of the material particles of the material volume, across which steeply high gradients of pressure,
density, temperature and velocity occur. In this case of real continuum media the transition from
one side to the other side occurs through a thin layer of material, called shock layer.

To establish the subject of shock waves from the first principle we start from the equations of
the mathematical model of moving continuous media (integral conservation laws).

In the moving continuous media for any moving volume ωt ⊂ Ωt and any moment of time t ∈ τ
following equalities are fair:

d

dt
(

∫
ωt

ρ dω) = 0, (2.15)

d

dt
(

∫
ωt

ρv dω) =

∫
∂ωt

pn dσ +

∫
ω

ρf dω,

d

dt
(

∫
ωt

ρ(x× v) dω) =

∫
∂ωt

(x× pn) dσ +

∫
ω

ρ(x× f) dω,

d

dt
(

∫
ωt

ρ(
v2

2
+ U) dω) =

∫
∂ωt

vpn dσ +

∫
ωt

ρvf dω +

∫
∂ωt

qn dσ.

All these equations can be written as concretization of the equation

d

dt

∫
ωt

F dω =

∫
∂ωt

ϕ · n dσ +

∫
ωt

χ dω,

where F, ϕ and χ are some functions.
For the continuous motion this equation can be reduced to∫

ωt

(
∂F

∂t
+ div(Fv − ϕ)) dω =

∫
ωt

χ dω,

Let us consider bounded domain G ⊂ R4(x, t) with piecewise smooth boundary Γ = ∂G (four
dimensional volume), for each point of which time t belongs to the same interval τ = (t1, t2). We
take integral of the equation with respect to time t from t1 to t2:∫ t2

t1

(

∫
ωt

(
∂F

∂t
+ div(Fv − ϕ)) dω) dt =

∫ t2

t1

(

∫
ωt

χ dω) dt.

Because of the theorem of mathematical analysis∫ t2

t1

∫
ωt

H dω =

∫
G

H dG

for function H(x, t). Let l be unit normal vector of direction t in R4, then

∂F

∂t
+ div(Fv − ϕ) = Div(F l + Fv − ϕ) (2.16)

where Div is a divergence in the space R4. Therefore we can use the Gauss-Ostrogradskii theorem∫
G

(
∂F

∂t
+ div(Fv − ϕ)) dG =

∫
Γ

(F l + Fv − ϕ) · ν dΓ,
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where ν is unit outward normal vector to Γ in the space R4. Then equation (2.16) has represen-
tation ∫

Γ

(F l + Fv − ϕ) · ν dΓ =

∫
G

H dG. (2.17)

In the case of continuous motion equation (2.17) is equivalent to (2.16) for any material volume.
But we can use equation (2.17) for more general motions than the continuous motions, because
equation (2.17) has sense for more general functions.

Definition. Motion of continuous media is called generalized motion if the functions ρ, U, P, v, q
are bounded measurable functions of the independent variables (x, t) and for them integral rela-
tions (2.17) are satisfied for any four dimensional volume G ⊂ R4.

Class of generalized motions are difficult for analysis. It has not even studied for more simple
models of continuum mechanics. We consider one very important subclass of generalized motions:
class motions with strong discontinuity.

Let motion be considered in the domain W ⊂ R4 and this domain is divided by some smooth
surface

Π = {(x, t) ∈ R4| f(x, t) = 0}

on two domains W1 and W2.

Definition. Generalized motion of continuous media is called a motion with strong disconti-
nuity if in each domains W1 and W2 the functions ρ, U, P, v, q have continuous limit values on the
surface Π. If these values are different for W1 and W2, then a cross-section

Πt = {x ∈ R3| f(x, t) = 0}

of hypersurface Π is called a surface of strong discontinuity.

By virtue of this definition the functions ρ, U, P, v, q have discontinuity of the first order (finite
jump) on the surface surface Π. In every point on Π they have two values: ρ1, U1, P1, v1, q1 are
limit values from the domain W1 and ρ2, U2, P2, v2, q2 are limit values from the domain W2. We
show that these sets of values can not be arbitrary: they are connected by some relations, which
are called equations of the strong discontinuity.

Now we start obtaining these equations.

Let a point x ∈ Πt and x+ nH(∆t) ∈ Πt+∆t. Here n is a normal unit vector to Πt.

Definition. A limit

Dn = lim
∆t→0

H(∆t)

∆t

is called a velocity of replacement of surface Πt in the direction of normal n.
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We note that the normal vector ν has the same direction as a vector (ft,∇xf) and ∇xf =
(∇xf ·n)n. Connection of Dn and four dimensional normal vector ν is obtained from the following
formulae

f(x, t) = 0, f(x+ nH(∆t), t+ ∆t) = 0.

Therefore, after expanding the function f(x+ nH(∆t), t+ ∆t) into Taylor series, we have

0 = f(x+ nH(∆t), t+ ∆t) = f(x, t) + ft∆t+ (∇xf)nH(∆t) +O((∆t)2).

Dividing the last equation on ∆t and tending ∆t→ 0 we obtain

ft + (∇xf)nDn = 0.

It means that vectors ν and l +Dnn are orthogonal.

On the hypersurface Π we select small domain σ with smooth boundary γ and we construct
close hypersurface Γ = σ1 + σ2 + σ3. Here σ3 is a side surface of the cylinder G with directrix ν,
σ1 and σ2 are parts of cylinder which are ”parallel” to the surface σ located on a small distance
h from the surface σ (see fig.2). In equation (2.17) the integral will consist of the three integrals:
with respect to surfaces σ1, σ2 and σ3. Then we tend h→ 0. Because a measure of the surface σ3

tends to 0 and integrand is bounded, then integral∫
σ3

(F l + Fv − ϕ) · ν dΓ → 0.

Integrals with respect to σ1 and σ2 tend to integrals with respect to σ but with different directions
of the normal vectors ν1 = −ν2. Therefore we have∫

σ

[F l + Fv − ϕ] · ν dΓ = 0.

Here [ ] is a symbol of jump: [a] = a2− a1, where a1 and a2 are limit values of the function a from
different sides of the surface σ. By virtue of arbitrariness of the surface σ we obtain

[F l + Fv − ϕ] · ν = 0.

or
[Fft + (Fv − ϕ)∇xf ] = 0.
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Substituting ft = −(∇xf · n)Dn and ∇xf = (∇xf · n)n we can rewrite as

(∇xf · n)[F (vn −Dn)− ϕn] = 0,

where vn = v · n and ϕn = ϕ · n.

Concretization of this abstract equation to (2.15) gives

[ρ(vn −Dn)] = 0, [ρ(vn −Dn)v − P < n >] = 0, [ρ(vn −Dn)(
v2

2
+ U)− vP < n > −qn] = 0.

It is more convenient to rewrite these equations by introducing

v = vnn+ vτ , P < n >= pnnn+ pnτ , v
′
n = vn −Dn.

Then we have

[ρv′n] = 0,

ρv′n[v′n] = [pnn], ρv′n[vτ ] = [pnτ ],

ρv′n[
1

2
((v′n)2 + v2

τ ) + U − 1

ρ
pnn] = [vτpnτ + qn].

From these equations we can see that if v′n = 0, then the first equations is satisfied.

Definition. A strong discontinuity with v′n = 0 or

vn = Dn

is called a contact discontinuity.

Equations of contact discontinuity are

vn = Dn, [pn] = 0, [vτ ]pnτ + [qn] = 0.

Another typical case of a strong discontinuity is for ”ideal” media in which a stress tensor
P = −pI is a spherical and q = 0.

Definition. A strong discontinuity with v′n 6= 0 is called a shock wave.

Equations of a shock wave are

[ρv′n] = 0, [p+ ρ(v′n)2] = 0, [vτ ] = 0, [
1

2
(v′n)2 + U +

p

ρ
] = 0.


