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Preface
This textbook is devoted to the intermediate–level course on ordinary differential equations. It

treats, as standard topics: existence and uniqueness theory, stability theory and short introduction
to functional differential equations. A material of the course is very compressed. The limitation
of the time for lecturing did not allow giving deeper suggested topics and more examples. But the
content of the textbook reflects main knowledge in ODE, which are studied at many universities.
Suggested material is self–contained and sufficient for continuing of self–studying.

The author thanks his students who worked through several preliminary editions of the manuscript
as it developed in courses taught at the Suranaree University of Technology (Thailand) since 1997.
Their questions, objections, and suggestions have helped to smooth out many rough spots. Among
the individuals I gratefully acknowledge Wei-Wei who typed the first version of the course and Nikolay
P.Moshkin.

There are many books that have influenced on the present textbook. The main influence was by
the book of Pontryagin (1974).
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Chapter 1

First order differential equations

Modern technology requires a deeper knowledge of the behavior of real physical phenomena. Today
the main way of studying physical processes and obtaining new knowledge is mathematical modelling:
using efficient mathematical modelling allows us to reduce time used in investigation and obtaining
new results.

Mathematical models of real world phenomenon are formulated as algebraic, differential or integral
equations (or a combination of them). These equations are constructed on the basis of our knowledge
about physical phenomena. After the construction of equations the study of their properties is
necessary. At this stage the theory of ordinary differential equations plays a significant role.

1.1 Introduction

Definition 1.1. A differential equation is an equation depending on values of unknown functions,
its derivatives and independent variables. Ordinary differential equations are differential equations
whose unknown functions only depend on one (independent) variable.

Ordinary differential equations (ODE) are classified according to order. The order of ODE is
defined by the largest order of containing derivatives.

Example 1.1.

y′x2 + 3y2 = 0

y′′y + (y′)2 = 0

In this chapter we consider first order ODEs. A general form of a first order ODE is

Φ(x, y, y′) = 0.

Here the function Φ is a function of the three independent variables: the independent variable x, an
unknown function y = y(x) and the derivative y′ = y′(x).

Definition 1.2. (Normal form of first order ODE) If an equation has a special the form

M(x, y) +N(x, y)y′ = 0,

then it is called a quasilinear equation. If the functions M and N have form

M = b(x)y + c(x), N = a(x),
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6 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

then this equation is called a linear equation.
The main goal of studying differential equations is to find their solutions.

Definition 1.3. A solution of ODE is a function f(x), x ∈ J that Φ(x, f(x), f ′(x)) = 0 for
any x in the interval J .

Example 1.2. Let us consider the first-order ODE

x+ yy′ = 0.

If y = y(x) is a solution of this equation, then

d

dx
(x2 + y2) = 2(x+ yy′) = 0.

It means that y = f(x) is a solution of the equation if and only if

x2 + f 2 = C,

where C is a constant. This formula gives the solution y = f(x) implicitly. The solution is

y = +
√
C − x2 or y = −

√
C − x2

and it is defined only in the interval (−
√
C,

√
C).

Example 1.3. (Fundamental theorem of the calculus)
Let the function g(x) in the equation

y′(x) = g(x), x ∈ J

be continuous in the interval J . For given numbers c ∈ J and a ∈ J there is one and only one
solution y = f(x) in the interval J that f(a) = c. This solution is given by the integral

f(x) = c+
∫ x

a
g(t) dt.

Example 1.4. Equations of the type

y′ = h(y)

can be solved by using the previous method.
Let y = f(x), x ∈ J be a solution of this equation. Assume that f ′(a) 6= 0, (a ∈ J). From the

inverse function theorem one can obtain the inverse function x = ϕ(y). Then for the function ϕ(y)
one has

1 =
dx

dy
h(y) or

dx

dy
=

1

h(y)

and we can use the previous example.

Example 1.5. The previous examples are particular cases of separable equations. Separable
equations can be written in the form

M(x) +N(y)y′ = 0



1.2. FIRST–ORDER LINEAR EQUATIONS 7

Separable DEs easy can be solved formally. Really, we can rewrite the equation as

M(x)dx+N(y)dy = 0.

If the functions M(x) and N(y) are continuous, then there exist φ(x) =
∫
M(x)dx and ψ(y) =∫

N(y)dy (indefinite integrals). It means that the solution y = f(x) satisfies

φ(x) + ψ(y) = C,

where C is constant. If N(y) = ψ′(y) 6= 0, then the last equation can be solved with respect
to y = f(x). Usually the constructed solution is only local, because the implicit theorem only
guarantees a local solution.

1.2 First–order linear equations

Definition 1.4. The ODE
a(x)y′ + b(x)y + c(x) = 0

is called a first order linear ODE.
If c(x) ≡ 0 then it is called a homogeneous equation, and nonhomogeneous otherwise. If a(x)

does not vanish in the interval J , then we can rewrite it in the normal form

y′ = −p(x)y + q(x).

Let us consider the problem how to find a solution of the last equation?
At first we take homogeneous case

y′ = −p(x)y
This is separable equation, therefore

1

y
dy + p(x)dx = 0.

After integrating and exponentiating we obtain

y = K · exp(−
∫
p(x)dx),

where K is constant. By using P (x) =
∫
p(x)dx (indefinite integral) we can get the same formula by

another way
d

dx
(yeP (x)) = y′eP (x) + yeP (x)P ′(x) = eP (x)(y′ + p(x)y) = 0.

It means that the general solution of the homogeneous equation has the form

y = K exp(−P (x)).

Theorem 1.1. All solutions of a linear homogeneous equation are of this from.
Now let us consider the nonhomogeneous equation. Multiplying the equation on eP (x) we have

d

dx
(yeP (x)) = q(x)eP (x)

or after integrating

yeP (x) = c+
∫
q(x)eP (x)dx
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Here we used indefinite integrals. If we know that y(a) = y0 (it is called an initial value) we can
rewrite it as

y = e−P (x)(y0 +
∫ x

a
q(t)eP (t)dt), P (x) =

∫ x

a
p(t)dt.

Theorem 1.2. The general solution of the nonhomogeneous linear first order ODE has this
form.

1.2.1 Linear equations (general survey)

Let X and Y be linear spaces.

Definition 1.5. A : X → Y is a linear operator if

• A(x1 + x2) = Ax1 + Ax2, ∀x1, x2 ∈ X

• A(λx) = λAx, ∀λ ∈ R, x ∈ X.

Example 1.6. A is m×m matrix.

Example 1.7. The mapping A : C1(J) → C(J)

Aφ(x) = a(x)φ′(x) + b(x)φ(x),

where φ ∈ C1(J), a, b ∈ C(J)
Let us consider the equation (linear equation)

Ax = b (1.1)

Here A : X → Y , b ∈ Y and x ∈ X is unknown.

Theorem 1.3. Any solution of the linear equation (1.1) can be represented as

x = xp + x0,

where xp is a particular solution of the equation and x0 is some solution of the homogeneous equation
Ax0 = 0.

Proof.
1) Let us show that x = xp + x0 is a solution of (1.1)

Ax = A(xp + x0) = Axp + Ax0 = b.

2) Let x and xp be solutions of (1.1). Then x0 = x−xp satisfies the linear homogeneous equation
Ax0 = 0. Really,

Ax0 = A(x− xp) = Ax− Axp = b− b = 0.

2

Remark 1.1. (Consequence) Any initial value problem of the linear ODE

y′ = −p(x)y + q(x), y(x0) = y0

with p(x), q(x) ∈ C[a, b] and x0 ∈ [a, b] has one and only one solution defined on the interval [a, b].

Exercise 1.1. Why can the initial value problem

xy′ − 2y = 0, x0 = 0, y0 = 0

have many solutions?

Remark 1.2. Method of variation of parameter (a way of constructing solutions of nonhomo-
geneous linear ODE).
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1.2.2 Quasilinear equations, implicit solutions

The quasilinear equation

M(x, y) +N(x, y)y′ = 0

can be rewritten as

M(x, y)dx+N(x, y)dy = 0.

If there exists a function U(x, y) such that

∂U

∂x
= M,

∂U

∂y
= N,

then this equation is called an exact differential equation. Why? Because it can be written as

∂U

∂x
dx+

∂U

∂y
dy = 0 ⇒ dU = 0

Therefore any solution y = f(x) of this equation satisfies

U(x, f(x)) = C,

where C is constant.

Theorem 1.4. A quasilinear equation with N,M ∈ C1(D) and simply connected domain D is
exact DE if and only if

∂M

∂y
=
∂N

∂x
.

If a quasilinear differential equation is not exact, then it can be done exact by multiplying on a
function µ(x, y) and requiring to be exact with M̂ = µM and N̂ = µN :

∂µM

∂y
=
∂µN

∂x

or

µyM + µMy = µxN + µNx.

Definition 1.6. A function µ(x, y) such that a quasilinear DE becomes exact DE is called an
integrating factor and the function Φ(x, y) is called an integral if

Φx = µM, Φy = µN.

Besides ”explicit” solutions y = f(x) and ”implicit” solutions Φ(x, y) = 0 we will use ”parametric”
solutions where the representation of a solution is x = g(t), y = h(t). In this case x = g(t), y = h(t)
is a solution if

g′(t)M(g(t), h(t)) +N(g(t), h(t))h′(t) = 0.

For example x = A cos t, y = A sin t is the parametric solution of the equation

x+ yy′ = 0.
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1.2.3 Linear fractional equations

Definition 1.7. Equations of the form

y′ =
cx+ dy

ax+ by
, ad 6= bc

with the constants a, b, c, d are called linear fractional equations.

An integration of this type of equations can be seen on the sequence of manipulations:

y = xv(x) ⇒ y′ = xv′ + v ⇒ xv′ + v =
c+ dv

a+ bv

xv′ =
c+ dv − av − bv2

a+ bv
⇒ dx

x
+

(a+ bv)dv

bv2 + (a− d)v − c
= 0

lnx = g(v) + ln k ⇒ x = k exp g(v)

g(v) = −
∫ (a+ bv)dv

bv2 + (a− d)v − c

The same method can be applied to any DE y′ = F (x, y), which admits the transformation x̂ =
kx, ŷ = ky. The method of solving such equations is the same

y = xv(x) ⇒ xv′ + v = F (x, xv).

Because F (x̂, ŷ) = F (x, y), then F (x, xv) = F (1, v). Thus,

xv′ = F (1, v)− v ⇒ dx

x
=

dv

F (1, v)− v
.

Remark 1.3. More generally, a type of equations

y′ = F (x, y)

with the function F (x, y), which satisfies F (kx, kny) = kn−1F (x, y), can be solved by changing the
unknown function y = u(x)xn:

y′ = xnu′ + nxn−1u = F (x, xnu) = xn−1F (1, u)

or

xu′ = −nu+ f(u)

where f(u) ≡ F (1, u). The simplest method for checking that a equation is of this type, is to check
the equality

xFx + nyFy = (n− 1)F (x, y).
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1.2.4 Complex differential equations

We have considered only real equations and real solutions, i.e. y ∈ Rn. Sometimes it’s easier to find
complex solutions of real equations and then to pick out from them real solutions. For such approach
we need to introduce notion of complex system of differential equations.

Definition 1.8. A function z : J → C

z(t) = φ(t) + iψ(t)

with φ : J → R, ψ : J → R is called a complex function of the real variable t in the interval J ⊂ R.
The same as for real functions one can define

• Z(l)(t) = φ(l)(t) + iψ(l)(t);

• Z(t) ∈ Ck(J) if φ(t) ∈ Ck(J) and ψ(t) ∈ Ck(J).

Remark 1.4. (Euler formula). Let w = u+ iv, u ∈ R, v ∈ R, then

ew = eu(cos v + i sin v).

Example 1.8. According to the previous remark, if λ = µ+ iγ, then

d

dt
(eλt) = λeλt

In fact,
Z(t) = eλt = eut(cos(γt) + i sin(γt)) = φ(t) + iψ(t)

where
φ(t) = eµt cos(γt), ψ(t) = eµt sin(γt).

Thus,

Z ′(t) = (µeµt cos(γt) + eµt(−γ sin(γt))) + i(µeµt sin(γt) + eµt(γ cos(γt))

= eµt(µeiγt + iγ(cos(γt) + i sin(γt))

= eλt(µ+ iγ) = λelt.

Exercise 1.2. Rewrite the complex equation

Z ′ = Z2 + iZ

as a system of real equations.

1.3 The initial value problem (Cauchy problem)

We study the normal first-order DE
y′ = F (x, y)

The initial value problem consists of finding the solution (or solutions) y = f(x), x ∈ J of the DE,
which satisfies the condition

f(x0) = y0, x0 ∈ J.
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The value x0 is called an initial point, and the number y0 is called an initial value. They are given.
Another name of this problem is a Cauchy problem.

If F (x, y) = g(x) ∈ C(J) or F (x, y) = −p(x)y + q(x) with p(x) ∈ C(J), q(x) ∈ C(J) we have
seen that this problem has one and only one solution and these solutions are continuously dependent
on the initial values. A problem with these properties is called a well-posed problem.

Definition 1.9. The Cauchy problem

y′ = F (x, y), y(x0) = c

is said to be well-posed in the domain D, if there is one and only one solution y = f(x, c) in D of
the given DE y′ = F (x, y) for each given (x0, c) ∈ D, and if this solution varies continuously with
respect to c.

Therefore in order to show that the problem is well-posed one needs to prove the following three
theorems:

• a theorem of existence

• a theorem of uniqueness

• a theorem of continuity

We start studying the second and the third properties. At first we show that if F (x, y) ∈ C(D),
then it is not sufficient for the uniqueness.

Example 1.9. Let us consider the set of the functions

f(x) = (x− c)3,

where c is a parameter. These functions satisfy the equation

f ′(x) = 3(x− c)2 = 3f 2/3(x).

It means that the set f(x) is a set of solutions of the equation y′ = 3y2/3. Note that the functions
(α < β)

y =


(x− α)3 x < α
0 α ≤ x ≤ β
(x− β)3 x > β

are also solutions of this equation.

Exercise 1.3. What the class Ck do these functions belong to?
If one takes the Cauchy problem

y(0) = 0,

then this problem has two-parameter set of solutions. Thus, this Cauchy problem has no uniqueness.

1.4 Uniqueness and continuity

We have seen that if F (x, y) ∈ C(D), then it is not enough for uniqueness of the Cauchy problem
with (x0, y0) ∈ D. But if F (x, y) ∈ C1(D), then one can prove uniqueness and continuity.

Definition 1.10. A function F (x, y) satisfies a one-sided Lipschitz condition in a domain D
if there exists a finite constant L that y2 > y1 implies

F (x, y2)− F (x, y1) ≤ L(y2 − y1)
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for any (x, y2) ∈ D and (x, y1) ∈ D.

Definition 1.11. (Lipschitz condition). A function F (x, y) satisfies a Lipschitz condition in a
domain D if there exists a finite constant L that

|F (x, y)− F (x, z)| ≤ L |y − z| , ∀(x, y) ∈ D, ∀(x, z) ∈ D.

Exercise 1.4. Show that if F (x, y) satisfies a Lipschitz condition, then it satisfies a one-sided
Lipschitz condition.

Example 1.10. Let F (x, y) = 3y2/3.

• If D1 = {(x, y)| y ≥ ε > 0}, then there exists L that F (x, y) satisfies a Lipschitz condition in
D1 (L = 2ε−1/3).

• If D2 = {(x, y)| y > 0}, then F (x, y) does not satisfy a Lipschitz condition in D2 (one cannot
find the constant L).

In checking that a function satisfies a Lipschitz condition one must find a constant L. The next
lemma is about how to find it.

Lemma 1.1. Let F (x, y) be continuously differentiable in a bounded closed convex domain

D (F ∈ C1(D)). Then it satisfies a Lipschitz condition there with L = sup
D

∣∣∣∣∣∂F∂y
∣∣∣∣∣.

Proof.
The domain D, being convex, contains the entire vertical segment joining (x, y) with (x, z).

Therefore there exists some η between y and z that

|F (x, y)− F (x, z)| = |y − z|
∣∣∣∣∣∂F∂y (x, η)

∣∣∣∣∣ .
This implies L = sup

D

∣∣∣∣∣∂F∂y
∣∣∣∣∣. 2

Example 1.11.
a) If F (x, y) = g(x), then ∂F

∂y
= 0 and L can be chosen as L = 0.

b) If F (x, y) = −p(x)y + q(x), x ∈ J (J is closed, p ∈ C(J), q ∈ C(J)), then ∂F
∂y

= −p and L

can be chosen as L = maxx∈J |p(x)|.
Remark 1.5. For satisfaction a Lipschitz condition we needed only continuous differentiability

with respect to y.

Lemma 1.2. Let σ(x) be a differentiable function satisfying the differential inequality:

σ′(x) ≤ Kσ(x), x ∈ [a, b]

where K is a constant. Then
σ(x) ≤ σ(a)eK(x−a), ∀x ∈ [a, b].

Proof.
After multiplying the inequality σ′(x)−Kσ(x) ≤ 0 by e−Kx we get

0 ≥ e−Kx(σ′(x)−Kσ(x)) =
d

dx
(σ(x)e−Kx).
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It means that the function σ(x)e−Kx is nonincreasing on the interval [a, b]. Therefore σ(x)e−Kx ≤
σ(a)e−Ka. 2

Lemma 1.3. If a function F (x, y) is a one-sided Lipschitz condition function, then for any
two solutions y = g(x) and y = f(x) of the equation y′ = F (x, y) there is

[g(x)− f(x)][g′(x)− f ′(x)] ≤ L[g(x)− f(x)]2.

Proof.
There is

[g(x)− f(x)][g′(x)− f ′(x)] = [f(x)− g(x)][f ′(x)− g′(x)] =

= [g(x)− f(x)][F (x, g(x))− F (x, f(x))].

If g(x) > f(x), then [g(x)− f(x)][g′(x)− f ′(x)] ≤ L[g(x)− f(x)]2. 2

Exercise 1.5. How to be in the case f(x) > g(x)?

Theorem 1.5. Let f(x) and g(x) be any two solutions of the ODE y′ = F (x, y) in a domain
D and F (x, y) satisfies a one-sided Lipschitz condition with a constant L. Then

|f(x)− g(x)| ≤ |f(a)− g(a)|eL(x−a), ∀x ≥ a.

Proof.
Let us consider the function σ(x) = [g(x) − f(x)]2. By the previous lemmas and because of

σ′(x) ≤ 2Lσ(x) we have
σ(x) ≤ exp(2L(x− a))σ(a), ∀x > a.

It proves the theorem. 2

Theorem 1.6. If F (x, y) satisfies a Lipschitz condition in a domain D, f(x) and g(x) are
solutions of the ODE y′ = F (x, y). Then

|f(x)− g(x)| ≤ exp(L|x− a|)|f(a)− g(a)|.

Proof.
If F (x, y) satisfies a Lipschitz condition, then F (x, y) satisfies a one-sided Lipschitz condition.

The proof of the theorem for x ≥ a follows from the previous theorem.
If x ≤ a, then after substitution t = −x one can also apply the previous theorem. In fact, for t

there is the same property as before with the solutions u(t) = f(−t) and v(t) = g(−t), t ≥ â = −a
of the equation

dw

dt
= −F (−t, w).

Then
|u(t)− v(t)| ≤ eL(t−â)|u(â)− v(â)|, t ≥ â

or (for x ≤ a)
|f(x)− g(x)| ≤ eL(a−x)|f(a)− g(a)| = eL|x−a||f(a)− g(a)|.

2

Corollary 1.1. (uniqueness). If F (x, y) satisfies a Lipschitz condition in domain a D, f(x)
and g(x) are solutions in the interval [α, β] of the Cauchy problem

y′ = F (x, y), y(x0) = y0, ∀(x0, y0) ∈ D,

then f(x) = g(x), ∀x ∈ [α, β].
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1.5 Comparison theorems

In this section the differential inequalities

f ′(x) ≤ F (x, f(x))

are studied.

Theorem 1.7. Let F (x, y) satisfy a Lipschitz condition with a constant L for x ≥ a. If a
function f(x) satisfies the differential inequality

f ′(x) ≤ F (x, f(x)), ∀x ≥ a

and g(x) is a solution of ODE g′(x) = F (x, g(x)), which satisfies the condition g(a) = f(a), then

f(x) ≤ g(x), ∀x ≥ a.

Proof.
Assume that there is x1 ≥ a such that f(x1) > g(x1). We define x0 ∈ [a, x1] that x0 is the largest

x with the property f(x) ≤ g(x). We can show that f(x0) = g(x0) (prove this as exercise).
Let σ(x) = f(x)− g(x) ≥ 0, x ∈ [x0, x1], then σ(x1) = 0. Really, since

σ′(x) = f ′(x)− g′(x) = f ′(x)− F (x, g(x))

≤ F (x, f(x))− F (x, g(x)) ≤ L(f(x)− g(x)) = Lσ(x),

then
σ(x) ≤ eL(x−x0)σ(x0), ∀x > x0.

Thus, σ(x) = 0, ∀x > x0 and hence, σ(x1) = 0. We obtained the contradiction to the hypothesis
that f(x1) > g(x1). 2

Theorem 1.8. Let g(x) and f(x) be solutions of the ODE’s

g′(x) = G(x, g(x)), f ′(x) = F (x, f(x)),

where F (x, y) ≤ G(x, y) in the strip a ≤ x ≤ b and F (x, y) or G(x, y) satisfies a Lipschitz condition.
If f(a) = g(a), then

f(x) ≤ g(x), ∀x ∈ [a, b].

Proof.
a) Let G(x, y) satisfy a Lipschitz condition. Since

f ′(x) = F (x, f(x)) ≤ G(x, f(x)),

then from the previous theorem one has

f(x) ≤ g(x), ∀x ≥ a.

b) Let F (x, y) satisfy a Lipschitz condition. If we take the functions u = −f(x), v = −g(x) and
H(x, u) = −F (x,−u), then

u′ = H(x, u), v′ = −G(x,−v) ≤ −F (x,−v) = H(x, v)
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Because H(x, v) satisfies a Lipschitz condition, then

v(x) ≤ u(x), ∀x ≥ a

or
g(x) ≥ f(x), ∀x ≥ a.

2

Corollary 1.2. Let g(x) and f(x) be solutions of the ODE’s

g′(x) = G(x, g(x)), f ′(x) = F (x, f(x)),

where F (x, y) ≤ G(x, y) in the strip a ≤ x ≤ b and G(x, y) satisfies a Lipschitz condition. If
f(a) = g(a), then for any x1 > a, either f(x1) < g(x1) or f(x) ≡ g(x), ∀x ∈ [a, x1].

Proof.
From the theorem we have that the function

σ1(x) = g(x)− f(x) ≥ 0, ∀x ∈ [a, x1].

Therefore for the point x1 ∈ (a, b] there is two possibilities: either f(x1) < g(x1) or f(x1) = g(x1).
In the first case the theorem is proved.

Assume that f(x1) = g(x1). In this case one has to prove that f(x) = g(x), ∀x ∈ [a, x1]. Let
x0 ∈ [a, x1] be a point in which g(x0) − f(x0) > 0. We show that then g(x) > f(x), ∀x ∈ [x0, x1],
that contradicts to the assumption f(x1) = g(x1). In fact, one has

σ′1(x) = g′(x)− f ′(x) = G(x, g(x))− F (x, f(x))

≥ G(x, g(x))−G(x, f(x)) ≥ −L(g(x)− f(x)) = −Lσ1(x).

Thus,
(eLxσ1(x))

′ = eLx(σ′1(x) + Lσ1(x)) ≥ 0.

This means that the function eLxσ1(x) is a nondecreasing function in [x0, x1]. Consequently, we have

σ1(x) ≥ σ1(x0)e
−L(x−x0) > 0, ∀x > x0.

2

Corollary 1.3. Let F (x, y) (or G(x, y)) satisfy a Lipschitz condition and F (x, y) ≤ G(x, y) in
the strip a ≤ x ≤ b. If f(a) < g(a), then

f(x) < g(x), ∀x ∈ [a, b].

Proof.
Assume that x1 > a is the first x where f(x) ≥ g(x). At this point f(x1) = g(x1). The functions

φ(t) = f(−t), ψ(t) = g(−t)

are solutions of the equations

φ′ = −F (−t, φ), ψ′ = −G(−t, ψ).

Since
−F (−t, y) ≥ −G(−t, y)
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and φ(−x1) = ψ(−x1), then from the theorem we obtain φ(t) ≥ ψ(t), t > −x1 and, therefore
φ(−a) ≥ ψ(−a) or f(a) ≥ g(a). It contradicts to the condition f(a) < g(a). 2

Exercise 1.6. Let f(u) be continuous and

a+ bf(u) 6= 0, ∀u ∈ [p, q],

where a, b, c are constants. Show that ODE

y′ = f(ax+ by + c),

has a solution passing through every point of the strip

p < ax+ by + c < q.

Exercise 1.7. Let F, G, f, g be as in the last theorem, and F (x, y) < G(x, y). Show that

f(x) < g(x), ∀x > a

without assuming that F or G satisfies a Lipschitz condition.
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Chapter 2

Existence and uniqueness

2.1 Additional Knowledge (from Real Analysis)

2.1.1 Normed spaces

Let X be a linear space.

Definition 2.1. Pair (X, ‖ · ‖) is called a normed space if the function ‖ · ‖: X → R+ has the
properties:

• 1) ‖ x ‖= 0 ⇔ x = 0,

• 2) ‖ λx ‖= |λ| ‖ x ‖ ∀x ∈ X, λ ∈ R (a homogeneity of the norm),

• 3) ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖ ∀x, y ∈ X (a triangle inequality ).

The function ‖ · ‖ is called a norm (‖ x ‖ – norm of the vector x).

Exercise 2.1. Prove that | ‖ x ‖ − ‖ y ‖ | ≤‖ x− y ‖, ∀x, y ∈ X.

Example 2.1. (Rn, ‖ · ‖2) is a normed space, where ‖ x ‖2=
√

Σn
i=1x

2
i for any vector

x = (x1, x2, · · · , xn) ∈ Rn

Exercise 2.2. Prove the Schwartz inequality:

|(x, y)| ≤‖ x ‖2‖ y ‖2

(Hint: Use that z2 ≥ 0 of the vector z = ax− by with a =‖ x ‖2 and b =‖ y ‖2).

Example 2.2. (C [a, b] , ‖ · ‖) with ‖ f(x) ‖= maxx∈[a,b] |f(x)| ∀f ∈ C([a, b]).

Exercise 2.3. Prove that in the previous example ‖ · ‖ is a norm.

2.1.2 Open and closed sets.

Definition 2.2. A set U ⊂ X is called an open set in X if

∀u ∈ U, ∃ε > 0 that ∀x ∈ X, ‖ x− u ‖< ε⇒ x ∈ U.

Definition 2.3. A set M ⊂ X is called a closed set if there is an open set U that U ∪M =
X (M = X\U).

19
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Example 2.3. The set U = {x ∈ X| ‖ x ‖< 1} is open in X.
In fact, let ‖ u ‖< 1, u ∈ U and x ∈ X that ‖ x− u ‖< ε = 1− ‖ u ‖, then

‖ x ‖=‖ x− u+ u ‖≤‖ x− u ‖ + ‖ u ‖< 1− ‖ u ‖ + ‖ u ‖= 1

This means that x ∈ U .

Exercise 2.4. Prove that the set M = {x ∈ X| ‖ x ‖≤ 1} is closed.

Exercise 2.5. Prove that if a set M is a closed set and {xn} → x∗, xn ∈M , then x∗ ∈M .

2.1.3 The Cauchy sequence

Definition 2.4. A sequence {xn} ⊂ X is called a Cauchy sequence if

∀ε > 0, ∃N, that ∀n,m > N ⇒ ‖ xn − xm ‖< ε

Definition 2.5. A normed space (X, ‖ · ‖) is called a complete normed space if every Cauchy
sequence converges (to some element of the space X). A complete normed space is called a Banach
space.

Example 2.4. (C[a, b], ‖ · ‖) is a complete space, therefore it is a Banach space.

Exercise 2.6. Prove that (C[a, b], ‖ · ‖) is a Banach space.

2.1.4 Contraction principle

Definition 2.6. Let M be a closed set in X. An operator T : M → M is called a contraction on
M if there exists a constant q that 0 < q < 1 and

‖ Tx− Ty ‖≤ q ‖ x− y ‖, ∀x, y ∈M.

Definition 2.7. An element x∗ is called a fixed point of an operator T if

x∗ = Tx∗.

Exercise 2.7. Prove that T (x) = arctan(x) is not a contraction (although | arctan(x) −
arctan(y)| < |x− y|, ∀x, y ∈ R1).

Let us consider a sequence {xn} with

x0, x1 = Tx0, x2 = T 2x0, . . .

or xn+1 = Txn. The vector x0 ∈ V is called an initial element.

Theorem 2.1. Let (X, ‖ · ‖) be a Banach space, M be a closed set in X, and T : M → M be
a contraction. Then there exists one and only one fixed point x∗ = Tx∗ and x∗ ∈M .

Proof.
Assume that x, y ∈M . Since ‖ Tx− Ty ‖≤ q ‖ x− y ‖, then ∀n one has

‖ T nx− T ny ‖≤ qn ‖ x− y ‖, ∀x, y ∈M.
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Let us consider a sequence {xn}, where xn = T nx0 (or xn+1 = Txn, ∀n). One can show that the
sequence {xn} is a Cauchy sequence. Let n and p be natural numbers and m = n+ p. Then

‖ xn − xm ‖=‖ xn − xn+p ‖=‖ xn+p − xn+p−1 + xn+p−1 − . . . xn+1 − xn ‖≤
≤ ‖ xn+p − xn+p−1 ‖ + ‖ xn+p−1 − xn+p−2 ‖ + . . .+ ‖ xn+1 − xn ‖≤
≤ qp ‖ xn − xn−1 ‖ +qp−1 ‖ xn − xn−1 ‖ + · · ·+ q ‖ xn − xn−1 ‖≤
= q(qp−1 + qp−2 + · · ·+ q + 1) ‖ xn − xn−1 ‖≤
≤ q(1 + q + · · ·+ qp+1 + · · ·) ‖ xn − xn−1 ‖=

=
q

1− q
‖ xn − xn−1 ‖≤

q

1− q
(qn−1 ‖ x1 − x0 ‖) =

qn

1− q
‖ x1 − x0 ‖

This means that ∀ε > 0, ∃N ∈ N, ∀n > N that qn

1−q ‖ x1 − x0 ‖ < ε and therefore

∀ε > 0, ∃N ∈ N that ∀n,m ≥ N =⇒ ‖ xn − xm ‖< ε.

Thus the sequence {xn} is a Cauchy sequence. Because X is a Banach space, then {xn} → x∗ ∈ X.
By virtue of closeness of M and of xn ∈M , we obtain x∗ ∈M .

Also one needs to prove that x∗ is a unique fixed point. There is the sequence of inequalities

‖ x∗ − Tx∗ ‖≤‖ x∗ − xn + xn − Tx∗ ‖≤‖ x∗ − xn ‖ + ‖ Txn−1 − Tx∗ ‖
≤ ‖ x∗ − xn ‖ +q ‖ x∗ − xn−1 ‖ → 0.

Therefore ‖ x∗ − Tx∗ ‖= 0 or x∗ = Tx∗. Assume that there is another point y ∈ M that y = Ty.
Then

‖ x− y ‖=‖ Tx− Ty ‖≤ q ‖ x− y ‖

or

0 ≤ (1− q) ‖ x− y ‖≤ 0.

This means that ‖ x− y ‖= 0 or x = y. 2

Remark 2.1. In the process of proving the theorem we obtained the inequalities

‖ T n+px− T nx ‖≤ qn
1− qp

1− q
‖ x− Tx ‖

‖ x∗ − T nx ‖≤ qn

1− q
‖ x− Tx ‖

that are valid for any vector x ∈M .

2.1.5 Continuity of solutions with respect to a parameter

The operator equation

x = Tλx

with an operator Tλ : M → M, depends on the parameter λ ∈ V . Here M is a subset of X. For all
λ ∈ V the operators Tλ satisfy a contraction property with 0 < q < 1:

‖ Tλx− Tλy ‖≤ q ‖ x− y ‖ .

Note that q does not depend on λ.
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By virtue of the previous theorem ∀λ ∈ V, ∃xλ = x(λ) that

xλ = Tλxλ

We say that solution xλ = x(λ) depends on a parameter.

Definition 2.8. A solution x(λ) is continuously dependent on λ at the point λ0 if

‖ x(λ)− x(λ0) ‖ → 0 as λ→ λ0.

If x(λ) is continuous at every point λ ∈ V , then it is said that x(λ) is continuous on V .

Theorem 2.2. Let (X, ‖ · ‖) be a Banach space and M be a closed set in X. If for each
parameter λ ∈ V the operator Tλ : M →M and

1) for each λ ∈ V the operator Tλ : M →M is a contraction with a constant q:

‖ Tλx− Tλy ‖≤ q ‖ x− y ‖, ∀x, y ∈M, λ ∈ V,

2) x(λ0) = Tλ0x(λ0) for λ0 ∈ V ,
3) Tλx(λ0) → Tλ0x(λ0) = x(λ0) if λ→ λ0.
Then the solution x(λ) = Tλx(λ) is continuous at λ = λ0.
Proof.
We prove even more:

‖ x(λ)− x(λ0) ‖≤
1

1− q
‖ Tλx(λ0)− Tλ0x(λ0) ‖ .

Let us consider the equation
Tλx = x.

The solution xλ of this equation can be found as a limit of the sequence {xλn}, where xλn+1 = Tλx
λ
n

with the starting element xλ0 = x(λ0). From the contraction principle we have

‖ x(λ)− xλ0 ‖≤
1

1− q
‖ xλ0 − Tλx

λ
0 ‖=

1

1− q
‖ x(λ0)− Tλx(λ0) ‖ .

2

Lemma 2.1. Let M be a ball in a normed space U :

M = {u ∈ U | ‖ u− u∗ ‖≤ r},

and the operator T : M → U is a contraction with a constant 0 < q < 1. If ‖ Tu∗ − u∗ ‖≤ (1− q)r,
then T : M →M .

Proof.
∀u ∈M ⇒ there are the sequence of the inequalities

‖ Tu− u∗ ‖≤‖ Tu− Tu∗ ‖ + ‖ Tu∗ − u∗ ‖≤ q ‖ u− u∗ ‖ +(1− q)r ≤ qr + (1− q)r = r.

Thus T : M →M . 2

Corollary 2.1. Let u = Tλu be an equation with a parameter λ and u∗ be a solution of this
equation for λ = λ∗. Assume that M is the ball in a Banach space U :

M = {u ∈ U | ‖ u− u∗ ‖≤ r},
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and ∀λ ∈ V1 the operator Tλ : M → U is a contraction. If

Tλu
∗ → Tλ∗u

∗ = u∗ if λ→ λ∗,

then there is a neighborhood V ⊂ V1 of the point λ∗ that ∀λ ∈ V , Tλ : M →M and

u(λ) = Tλu(λ) → u(λ∗) = u∗ if λ→ λ∗.

Remark 2.2. Note that ∀λ ∈ V there exists only solution u(λ) = Tλu(λ).
Proof.
Because Tλu

∗ → u∗ if λ→ λ∗, then there exists a neighborhood V of the point λ∗ such that

‖ Tλu∗ − u∗ ‖≤ (1− q)r.

By virtue of the previous lemma one obtains

Tλ : M →M, ∀λ ∈ V.

From the theorem of continuity with respect to a parameter λ one has the proof of the lemma.
2

2.2 Existence and uniqueness theorems

1. Existence and uniqueness theorems are proven for normal systems of first order ordinary dif-
ferential equations.

Definition 2.9. Any system of ODEs with only first derivatives of the form

dy

dx
= F (x, y), y ∈ Rm (2.1)

is called a normal system of first order ODEs.

Definition 2.10. A normal system of ODEs for the unknown functions ξ1(x), ξ2(x), . . . , ξm′(x)
is any system of the form

dn(k)ξk
dxn(k)

= Fk(ξ1,
dξ1
dx

, . . . ; ξ2,
dξ2
dx

, . . . ; ξm′ ,
dξm′

dx
, . . . ;x) (2.2)

k = 1,m′, in which for each k only derivatives dpξj
dxp of any ξj of orders p < n(j) occur in the right

side.
In other words, the highest derivatives of each function ξj can be found only in the left side.

Theorem 2.3. Every normal system (2.2) of ODEs is equivalent to a first order normal system
(2.1).

Proof.
By introducing new unknown functions:

y1 = ξ1, y2 =
dξ1
dx

, . . . , yn(1) =
dn(1)−1ξ1
dxn(1)−1

,

yn(1)+1 = ξ2, yn(1)+2 =
dξ2
dx

, . . . ,

m =
m′∑
j=1

n(j)
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we rewrite system (2.2) as

dy1

dx
= y2,

dy2

dx
= y3, . . . ,

dyn(1)

dx
= F1(y1, y2, . . . , ym;x).

The initial value problem for normal system (2.2) is the problem of finding a solution for which the
variables

ξ1,
dξ1
dx

, . . . ,
dn1−1ξ1
dxn1−1

; ξ2,
dξ2
dx

, . . . ;
dn2−1ξ2
dxn2−1

; . . .

are given at the point x = x0.
Thus, a study of a normal system of first order DEs provides properties for normal systems.
If m′ = 1 in (2.2), then normal system (2.2) is called a normal equation or an ordinary DE solved

with respect to the highest derivative:

dny

dxn
= F (x, y, y′, . . . , y(n−1)).

We start studying normal systems from the theorem of existence and uniqueness for a normal
first order equations with m = 1. For the sake of simplicity, we consider the case with one unknown
function, in order to present the main ideas of proofs. All theorems are consequences of the con-
traction principle. In order to use it one needs to rewrite a normal system of ODEs as an operator
equation and to prove that this operator is a contraction.

Let us consider a first order ODE

y′ = F (x, y), (x, y) ∈ D ⊂ R2,

where D is an open set in R2 and F ∈ C(D). A point (x0, y0) ∈ D is an arbitrary point in D.
Because D is open, then there is the closed rectangle V :

V = {(x, y) ∈ D | |x− x0| ≤ a, |y − y0| ≤ b}

that V ⊂ D. By virtue of continuity of the function F in D, there is a maximum m
(x,y)∈V

=

max |F (x, y)|. Denote h = min(a, b
m

) and J = [x0 − h, x0 + h]. It is assumed that m > 0, be-
cause in the case m = 0 the existence and uniqueness are simply solved.

Theorem 2.4. (Picard). Let F (x, y) ∈ C(D) and satisfy a Lipschitz condition with a constant
L in V ⊂ D. Then on the interval J there is only one solution of the Cauchy problem

y′ = F (x, y), y(x0) = y0, (x0, y0) ∈ D.

This solution can be obtained by the iterative method.
Proof.
The Cauchy problem {

y′ = F (x, y)
y(x0) = y0

is equivalent to the problem of finding a solution of the operator equation

y = Ty,

where the operator T : C(J) → C(J) is defined by the formula

Ty = y0 +
∫ x

x0

F (t, y(t))dt.
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Let us prove that T is a contraction. For this purpose one has to construct a Banach space U , a
closed set M ⊂ U , to prove that T : M →M and T is a contraction.

Let U be a set of functions {u(x) ∈ C(J)} with the norm

‖ u ‖= max
x∈J

(e−L|x−x0||u(x)|).

This norm is equivalent to the uniform norm on the space of continuous functions C(J):

‖ u ‖1= max
x∈J

|u(x)|.

Exercise 2.8. Prove that
‖ u ‖≤‖ u ‖1≤ eLh ‖ u ‖ .

(Hint: |u(x)| ≤ eL(h−|x−x0|)|u(x)| ).

Theorem 2.5. (real analysis) (C(J), ‖ · ‖1) is a Banach space.

Exercise 2.9. Prove that (C(J), ‖ · ‖) is a Banach space.
Consequence of the exercise is that the space (C(J), ‖ · ‖) is a Banach space.
The set

M = {u(x) ∈ U |max
x∈J

|u(x)− y0| ≤ b}

is a closed set in U .

Exercise 2.10. Prove that M is a closed set in U .
To prove the Picard theorem, firstly, we show that T : M → M . This means that one needs to

prove that if u(x) ∈M , then Tu ∈M .
Because u(x) ∈ C(J), then (Tu)(x) ≡ y0 +

∫ x
x0
F (t, u(t))dt is a continuous function (prove it as

exercise). By virtue of the inequalities

|y0 − (Tu)(x)| = |
∫ x

x0

F (t, u(t))dt| ≤ |
∫ x

x0

|F (t, u(t))|dt| ≤
∫ x

x0

mdt = m|x− x0| ≤ mh ≤ b,

one obtains that T : M →M .
The next step is to prove that T : M →M is a contraction. In order to do this one needs to find

a constant q (0 < q < 1) such that ∀u1(x) ∈M,u2(x) ∈M :

‖ Tu1 − Tu2 ‖< q ‖ u1 − u2 ‖ .

This study is separated into two parts: a) x ≥ x0 and b) x < x0.
For the first case (x ≥ x0) one gets the sequence of the inequalities:

e−L(x−x0)|Tu1 − Tu2| ≤ e−L(x−x0)
∫ x

x0

|F (t, u1(t))− F (t, u2(t))|dt ≤

≤ Le−L(x−x0)
∫ x

x0

|u1(t)− u2(t)|dt =

= Le−L(x−x0)
∫ x

x0

eL(t−x0)e−L(t−x0)|u1(t)− u2(t)|dt ≤

≤ Le−L(x−x0)
∫ x

x0

eL(t−x0) ‖ u1 − u2 ‖ dt =

= e−L(x−x0) ‖ u1 − u2 ‖
∫ x

x0

eL(t−x0)d(L(t− x0)) =

= (1− e−L(x−x0)) ‖ u1 − u2 ‖≤
≤ (1− e−Lh) ‖ u1 − u2 ‖ .
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The case b) (x < x0) is studied by the same way.

Exercise 2.11. Prove the inequality

e−L(x−x0)|Tu1(x)− Tu2(x)| ≤ (1− e−Lh) ‖ u1 − u2 ‖, ∀x ∈ J = [x0 − h, x0 + h].

By taking q = 1− e−Lh one satisfies the conditions 0 < q < 1 and

‖ Tu1 − Tu2 ‖≤ q ‖ u1 − u2 ‖, ∀u1, u2 ∈M.

Thus, we have constructed the contraction operator T : M →M with the closed set M ⊂ U , where
U is a Banach space.

From the contraction principle we can conclude that there exists y(x) ∈M that

y(x) = y0 +
∫ x

x0

F (t, y(t))dt.

2

Exercise 2.12. Using the Picard theorem prove that if

a) F (x, y) ⊂ C(R2) ,

b) for any rectangle in R2 there exists L (which depends on the rectangle),

c) there is a constant K that

sup
(x,y)∈R2

|F (x, y)| < K.

Then for any (x0, y0) ∈ R2 there exists one and only one solution y(x), x ∈ R1.

(Hint: By choosing an arbitrary a one can take b such that b
K
> a.)

Example 2.5. The Cauchy problem{
y′ = sin(x+ y2)
y(x0) = y0

has a solution for all x ∈ R1 (apply the previous exercise).

2.2.1 Global theorem

Let us consider the Cauchy problem {
y′ = F (x, y)
y(x0) = y0

(2.3)

with the function F (x, y), which satisfies the properties:

(a) F (x, y) ∈ C(D), where D = {(x, y) ∈ R2| x ∈ J = (a, b)}

(b) the function F (x, y) satisfies a Lipschitz condition in D with the Lipschitz constant L(x), which
can depend on x: there is a function L(x) ∈ C(J) that

|F (x, y1)− F (x, y2)| ≤ L(x)|y1 − y2|, ∀(x, y1) ∈ D, (x, y2) ∈ D.
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Remark 2.3. Left end of the interval J can be equal to −∞ (a = −∞), and right end can also
be equal to +∞ (b = +∞).

Remark 2.4. It is possible that either L(x) → +∞ as x→ a or L(x) → +∞ as x→ b.

Theorem 2.6. (Global) Let F (x, y) ∈ C(D) satisfy a Lipschitz condition in D

|F (x, y1)− F (x, y2)| ≤ L(x)|y1 − y2|,

where D = {(x, y) ∈ Rm+1| x ∈ J = (a, b)}. Then there is only one solution of the Cauchy problem

y′ = F (x, y), y(x0) = y0

on the interval J , ∀(x0, y0) ∈ D. This solution can be obtained by an iterative method.
Proof.
We use a contraction principle to the operator equation

y = Ty

where
Tu(x) = y0 +

∫ x

x0

F (t, u(t))dt.

Here a Banach space is U = {u(x) ∈ C(J)} with the norm

‖ u ‖= sup
x∈J

(e−λ(x)|u(x)|) < +∞,

where

λ(x) =
1

q
|
∫ x

x0

L(t)dt|+ |
∫ x

x0

|F (t, y0)dt||.

and the constant q is an arbitrary constant (0 < q < 1). We will prove that T : U → U and

‖ Tu1 − Tu2 ‖≤ q ‖ u1 − u2 ‖ . (2.4)

In order to prove these properties we consider two cases: (a) x ≥ x0 and (b) x < x0.
In case (a) λ(x) = 1

q

∫ x
x0
L(t)dt+

∫ x
x0
|F (t, y0)dt| ≥ 0, thus

λ′(x) =
1

q
L(x) + |F (x, y0)|

and, therefore
1

q
L(x) ≤ λ′(x), |F (x, y0)| ≤ λ′(x).

Any function u(x) ∈ U satisfies the inequality

e−λ(x)|Tu(x)| ≤ e−λ(x)|y0|+ e−λ(x)
∫ x

x0

|F (t, u(t))|dt.

Since
|F (t, u)| ≤ |F (t, y0)|+ |F (t, y0)− F (t, u)|,

one obtains

e−λ(x)|Tu(x)| ≤ e−λ(x)
[
|y0|+

∫ x

x0

|F (t, y0)|dt+
∫ x

x0

|F (t, u(t))− F (t, y0)|dt
]
.
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Estimating the second and the third terms one has

e−λ(x)
∫ x

x0

|F (t, y0)|dt ≤ e−λ(x)
∫ x

x0

λ′(t)dt = e−λ(x)(λ(x)− λ(x0)) = λ(x)e−λ(x)

and

e−λ(x)
∫ x

x0

|F (t, u(t))− F (t, y0)|dt ≤ e−λ(x)
∫ x

x0

L(t)(|u(t)|+ |y0|)dt ≤

≤ e−λ(x)
∫ x

x0

L(t)eλ(t)e−λ(t)|u(t)|dt+ qe−λ(x)|y0|
∫ x

x0

λ′(t)dt.

Note that the function f(λ) = λe−λ is bounded. Let max
λ

(λe−λ) ≤ C1. Since

e−λ(x)
∫ x
x0
L(t)eλ(t)e−λ(t)|u(t)|dt ≤ e−λ(x) ‖ u ‖

∫ x
x0
L(t)eλ(t)dt ≤

≤ qe−λ(x) ‖ u ‖
∫ x
x0
λ′(t)eλ(t)dt =

= qe−λ(x) ‖ u ‖ (eλ(x) − eλ(x0)) = q ‖ u ‖ (1− e−λ(x)) ≤ q ‖ u ‖

and
qe−λ(x)|y0|

∫ x

x0

λ′(t)dt = q|y0|e−λ(x)λ(x) ≤ q|y0| max
λ

(λe−λ) ≤ q|y0|C1

the value e−λ(x)|Tu(x)| is bounded for any x ≥ x0.

Exercise 2.13. Prove the property

|Tu1 − Tu2| ≤ (
∫ x

x0

L(t)eλ(t)dt) ‖ u1 − u2 ‖≤ eλ(x)q ‖ u1 − u2 ‖, ∀x ≥ x0.

Hint: the proof is the same as in the Picard theorem.
In the case (b) (x < x0):

λ(x) =
1

q

∫ x0

x
L(t)dt+

∫ x0

x
|F (t, y0)dt|, −λ′(x) =

1

q
L(x) + |F (x, y0)|.

For any u(x) ∈ U one obtains (by the same way as in the previous case):

e−λ(x)|Tu(x)| ≤ e−λ(x)[ |y0|+
∫ x0

x
|F (t, u(t))|dt+

∫ x0

x
|F (t, u(t))− F (t, y0)|dt],

which means that e−λ(x)|Tu(x)| is bounded.

Exercise 2.14. Prove property (2.4).
Thus we have proven that T : U → U and

‖ Tu1 − Tu2 ‖≤ q ‖ u1 − u2 ‖ .

Using the contraction principle one obtains the proof of the theorem. 2

Example 2.6. For the equation y′ = ex
2
cos y, J = (−∞,+∞) a Lipschitz constant is

L(x) = ex
2
.

Example 2.7. For the equation y′ = a(x)y+b(x), x ∈ J a Lipschitz constant is L(x) = |a(x)|.
Remark 2.5. If a Lipschitz condition is not satisfied on the whole interval J , then it is possible

that there is no solution on the whole interval J .
For example, the function F (x, y) in the problem

y′ = y2, y(
1

2
) = −2
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has no constant L such that

|F (u1)− F (u2)| = |u1 + u2| |u1 − u2| ≤ L|u1 − u2|, ∀u1, u2.

And there is no solution on the intervals J = (−∞,∞) or even J = (−1, 1).

Exercise 2.15. Prove that for the equation

y′ =
y sin2(ey)

1 + y2

the conditions of the global theorem are not satisfied, but there is one and only one solution on the
whole interval J = (−∞,∞). Explain why?

(Hint: see the exercise after the Picard theorem).

2.2.2 Existence and uniqueness theorems in the case m > 1

Here we study the Cauchy problem for a normal system of first order DE’s with m differential
equations: {

y′ = F (x, y)
y(x0) = y0

where y = (y1, y2, . . . , ym) and F = (F1, F2, . . . , Fm).
The following properties of vectors and vector–functions are used.
A norm of the vector y:

|y| =

√√√√ m∑
i

y2
i .

There are inequalities
1) |(u, v)| ≤ |u||v|, ∀u, v ∈ Rm

2) |u+ v| ≤ |u|+ |v|, ∀u, v ∈ Rm

3) |
∫ b
a ~u(t)dt| ≤

∫ b
a |~u(t)|dt, u : [a, b] → Rm.

A vector–function F (x, y) satisfies a Lipschitz condition in D ⊂ Rm+1 if

|F (x, y)− F (x, z)| ≤ L|y − z|, ∀(x, y), (x, z) ∈ D.

Remark 2.6. If D is a convex domain and there are inequalities

|∂Fi
∂yj

(x, y)| ≤ K, ∀i, j = 1,m,

then
|F (x, u)− F (x, v)| ≤ Km3/2|u− v|, ∀(x, u), (x, v) ∈ D.

Let us prove it. If y(s) = u+ s(v − u), then from the Lagrange formula there exists s∗ ∈ [0, 1] that

Fi(x, v)− Fi(x, u) = Fi(x, y(1))− Fi(x, y(0)) =
dFi(x, y(s))

ds |s=s∗
.

By virtue of
dFi(x, y(s))

ds
=
∑
j

∂Fi
∂yj

(x, y(s))
dyj(s)

ds
=
∑
j

∂Fi
∂yj

(x, y(s))(vj − uj)
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one obtains
|Fi(x, v)− Fi(x, u)| ≤

∑
j

K|vj − uj| ≤
∑
j

K|v − u| = mK|v − u|.

Therefore

|F (x, v)− F (x, u)| =
√∑

i

(Fi(x, v)− Fi(x, u))2 ≤
√∑

i

m2K2|v − u|2 = m3/2K|v − u|.

For the norm in the space C(J) one can use the uniform norm

‖ y(x) ‖1= max
x∈J

|y(x)|,

where J = [a, b], y(x) is an arbitrary continuous function.

Theorem 2.7. (local theorem) Let the normal system of ODE’s of the Cauchy problem

y′ = F (x, y), y(x0) = y0

satisfy the properties:
(a) F (x, y) ∈ C(D), where D is an open set in Rm+1,
(b) for the cylinder G = {(x, y) ∈ D| |x − x0| ≤ a, |y − y0| ≤ b}, there are the constants

m = max
(x,y)∈G

|F (x, y)| and h = min(a, b
m

),

(c) F (x, y) satisfies a Lipschitz condition in G.
Then there exists only one solution of the Cauchy problem in the interval J = [x0 − h, x0 + h].

Exercise 2.16. Proof the local theorem.
Hint: Proof is the same as for the Picard theorem with m = 1: define a closed set M in a Banach

space U , that T : M →M is a contraction.

Exercise 2.17. Formulate a global theorem of existence and uniqueness of a solution for a
normal system of first order DE’s.

Hint: see the global theorem for one equation.

Exercise 2.18. Prove the theorem from the exercise above.

2.3 Existence without a Lipschitz condition

In this section we show that the existence of solutions of the Cauchy problem may be established
without the Lipschitz hypothesis on F . In this case there is no conclusion of uniqueness.

Theorem 2.8. Suppose that F is continuous in an open domain D. Then for any (x0, y0) ∈ D
there exists a solution y : I → Rn of the Cauchy problem

y′ = F (x, y), y(x0) = y0, (2.5)

defined on some open interval I containing x0.
The proof of the theorem uses one of the basic results of analysis, known as Ascoli’s Theorem or

the Ascoli-Arzela Theorem, which we now recall.

Definition 2.11. Suppose that S ⊂ Rp. A sequence {fm}∞m=1 of functions, fm : S → Rq,
is equicontinuous if for any ε > 0 there is a δ > 0 such that, for any m, and ∀x, y ∈ S such that
|x− y| < δ, then |fm(x)− fm(y)| < ε.

In particular, an equicontinuous sequence is uniformly continuous.
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Theorem 2.9. (Ascoli-Arzela). Let K ⊂ Rp be compact and let {fm} be an equicontinuous
sequence of functions, fm : K → Rq. Suppose additionally that there is a constant M such that
|fm(x)| ≤ M for all m and all x ∈ K. Then there exists a subsequence {fmk

}∞k=1 which converges
uniformly on K to some limit function f : K → Rq.

Proof. Let xi, i ∈ N be a sequence of points that is dense in K. The sequence fm(x1) is
bounded; hence it has a convergent subsequence. That is, we can choose a subsequence m1j such
that fm1j

(x1) converges as j → ∞. Similar, we can choose a subsequence m2j of the sequence m1j

such that fm2j
(x2) converges. Since m2j is a subsequence of m1j, fm2j

(x1) converges as well. Next, we
choose a subsequence m3j of the sequence m2j such that fm3j

(x3) converges also at x3. We proceed
in this maaner ad in6nitum. Finally, consider the ”diagonal” sequence fmjj

(x). Except for the first
i − 1 terms, mjj is a subsequence of mij; hence fmjj

(xi) converges for every i ∈ N . To simplify
notation, we shall set gj(x) = fmjj

(x) in the following.
To conclude the proof, we show that the sequence gm(x) is uniformly Cauchy. Let ε > 0 be given.

The gm(x), being a subsequence of the fm(x) are uniformly equicontinuous on K; hence there is a
δ > 0 such that |gm(y)− gm(x)| < ε/3 whenever |y − x| < δ. Since K is compact, there is a L ∈ N
such that for every x ∈ K there exists i ∈ {1, ..., L} with |xi − x| < δ. Now choose P large enough
so that |gm(xi) − gk(xi)| < ε/3 for m, k > P and every i ∈ {1, ..., L}. For m, k > P and arbitrary
x ∈ K, we now have

|gm(x)− gk(x)| ≤ |gm(x)− gm(xi)|+ |gm(xi)− gk(xi)|+ |gk(xi)− gk(x)| < ε,

for some i ∈ {1, ..., L}. 2

We can now state and prove the fundamental existence result.

Theorem 2.10. (Peano) Let V1 ⊂ R×Rn be the closed rectangle

V1 = {(x, y)| |x− x0| ≤ a, |y − y0| ≤ b},

where a, b > 0, and suppose that F : V1 → Rn is continuous. Let M be the maximum of |F |
on V1 and let h = min{a, b

M
}. Then there exists a function y(x) defined on the (closed) interval

J = [x0 − h, x0 + h] and satisfying the integral equation

y(x) = y0 +
∫ x

x0

F (s, y(s)) ds, (2.6)

for all x ∈ J .
Proof. We construct y(x) for x ∈ J+ ≡ [x0, x0 + h]. The construction for x < x0 is similar.

The method is due to Euler and is frequently mentioned in numerical analysis as a simple scheme to
construct approximate solutions of an initial value problem.

For each m ≥ 1 we subdivide J+ into m subintervals of the form [x
(m)
k−1, x

(m)
k ], where x

(m)
k =

x0 + hk/m for k = 1, . . . ,m, and construct an approximate solution ym(x) on J+ which is linear on
each subinterval. The construction is by induction on the index k of the subinterval; we first define
ym(x0) = y0, and then, assuming that we have constructed ym with (x, ym(x)) ∈ V1 on all intervals

[x
(m)
j−1, x

(m)
j ] for j ≤ k, we define

ym(x) = ym(x
(m)
k ) + (x− x

(m)
k )F (x

(m)
k , ym(x

(m)
k )), x ∈ [x

(m)
k , x

(m)
k+1].

Note that this definition is chosen so that (i) ym is continuous at x
(m)
k , and (ii) on the interval

[x
(m)
k , x

(m)
k+1], y

m has derivative F (x
(m)
k , ym(x

(m)
k )), our best guess at the correct derivative F (x, y(x)).

In particular, it follows from (i) and (ii) that

ym(x) = y0 +
∫ x

x0

f (m)(s) ds (2.7)
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for 0 ≤ x ≤ x
(m)
k+1, where

f (m)(t) = F (x
(m)
j , ym(x

(m)
j )), t ∈ [x

(m)
j , x

(m)
j+1].

Equation (2.7) implies
|ym(x)− y0| ≤M |x− x0| ≤Mh ≤ b, (2.8)

so that (x, ym(x)) ∈ V1 for x0 ≤ x ≤ x
(m)
k+1, allowing us to continue the induction. Eventually we

construct ym on all of J+.
Now from (2.7) it follows that the sequence {ym} is equicontinuous and uniformly bounded on

J+. In fact, for x, x′ ∈ J+,

|ym(x)− ym(x′)| = |
∫ x′

x
f (m)(s)ds| ≤M |x− x′|, (2.9)

and
|ym(x)| ≤ |ym(x0)|+ |ym(x)− ym(x0)| ≤ |y0|+Mh. (2.10)

By the Ascoli-Arzela theorem there is thus a subsequence {ymj(x)} which converges uniformly on
J+ to some continuous function y(x). We claim that y(x) is the desired solution of (2.6). This will
follow immediately from (2.7) if we can show that fmj(x) converges uniformly on J+ to F (x, y(x)).
It is so, because y(x) is a limit of uniformly convergent and continuous functions ymj(x). Since
F is continuous and hence uniformly continuous on the compact set V1, the uniform covergence of
ymj(x) to y(x) on J+ implies the uniform convergence of F (x, ymj(x)) to F (x, y(x)) on J+. Let us
check it by the (ε, δ)-language: verify the uniform convergence of the sequence {fmj}. For notational
simplicity we suppose that the sequence {ym(x)} itself converges to y(x). Then given ε > 0, uniform
continuity of F on V1 implies that there exists a δ > 0 such that |F (x, y) − F (x′, y′)| < ε whenever
|(x − x′, y − y′)| < δ. Now choose m so large that h/m < δ/3, that Mh/m < δ/3, and, using the
uniformity of convergence of {ym(x)}, that |ym(x) − y(x)| < δ/3 whenever x ∈ J+. If x ∈ J+, then

x
(m)
k ≤ x ≤ x

(m)
k+1 for some k, so that by (2.9),

|(x(m)
k − x, ym(x

(m)
k )− y(x))| ≤ |x(m)

k − x|+ |ym(x
(m)
k )− y(x)| ≤

≤ |x(m)
k − x|+ |ym(x

(m)
k )− ym(x)|+ |ym(x)− y(x)| ≤

≤ h

m
+
Mh

m
+
δ

3
≤ δ

3
+
δ

3
+
δ

3
= δ,

and hence
|f (m)(x)− F (x, y(x))| = |F (x

(m)
k , ym(x

(m)
k ))− F (x, y(x))| < ε.

Therefore the function y(x) satisfies the equation

y(x) = y0 +
∫ x

x0

F (s, y(s)) ds.

2

It will in fact be convenient to have at our disposal a formally stronger statement of existence,
showing that under appropriate restrictions the interval of definition of the solution may be chosen
uniformly in the initial condition, and the pair (x, y(x)) may be required to remain in a compact
subset of D.

Corollary 2.2. Let D ⊂ R × Rn be open and let f : D → Rn be continuous. Then for any
compact subset K ⊂ D there exist open sets U, V , with compact closures, satisfying

K ⊂ U ⊂ U ⊂ V ⊂ V ⊂ D, (2.11)
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and an ε > 0, such that for every (x0, y0) ∈ U a solution y(x) of (2.5) is defined on the interval
I = (x0 − ε, x0 + ε) and satisfies (x, y(x)) ∈ V for x ∈ I.

Proof. Let U, V be any open sets with compact closures satisfying (2.11). Let

η = d(U, V c) ≡ inf
x∈U,y∈V c

|y − y|,

where V c denotes the complement of V and d(h,B) is the distance between two sets. Because U is
compact and V c is closed, η is strictly positive. Let M = supV |f(x)|.

Now if (x0, y0) ∈ U , then the rectangle

{(x, y) | |x− x0| ≤ η/
√

2, |y − y0| ≤ η/
√

2}

is contained in V . The stated result, with ε = min{η/
√

2, η/
√

2M}, now follows from Theorem 2.3,
the fundamental existence result proved above. 2

2.4 Continuity of solution with respect to initial values and

parameters

We study the Cauchy problem
y′ = F (x, y, µ), y(x0) = y0. (2.12)

If the function F (x, y, µ) has ”good” properties (for example, it satisfies the conditions of the existence
theorems), then there exists only solution for each fixed x0, y0 and parameter µ: y = φ(x;λ), x ∈
(a, b), where λ = (x0, y0, µ) is a vector of parameters.

Definition 2.12. A solution of the Cauchy problem (2.12) is called continuously dependent with
respect to parameters (initial values and some parameters) at the point

x0 = x∗0, y0 = y∗0, µ = µ∗

if there exists an interval [α, β] ⊂ (a, b) that φ(x, λ) → φ(x, λ∗) as λ→ λ∗ uniformly on the interval
[α, β], (that means in the uniform norm ‖ · ‖1)). Here λ∗ = (x∗0, y

∗
0, µ

∗).

Exercise 2.19. Formulate a definition of continuity a solution of the Cauchy problem for an
n-th order equation solved with respect to high derivatives.

We consider the functions F (x, y, µ) where (x, y) ∈ D, µ ∈ Q, D is an open set in Rm+1, Q is a
closed bounded set in Rk. Assume that F (x, y, µ) ∈ C(D ×Q) and satisfies a Lipschitz condition in
P ×Q, i.e. there is a number L = L(P ) > 0 such that

∀(x, y1) ∈ P, (x, y2) ∈ P, µ ∈ Q⇒ |F (x, y2, µ)− F (x, y1, µ)| ≤ L|y1 − y2|,

where P is any closed set in D.

Remark 2.7. A sufficient condition for satisfying a Lipschitz condition property is Fy(x, y, µ) ∈
C(D ×Q), with a convex (with respect to y) domain D.

Theorem 2.11. (continuous dependence with respect to parameters) Let the function F (x, y, µ)
satisfy a Lipschitz condition in P ×Q:

|F (x, y1, µ)− F (x, y2, µ)| ≤ L(P )|y1 − y2|, ∀(x, y1), (x, y2) ∈ P, ∀µ ∈ Q

for any closed and bounded P ⊂ D. Then a solution of the Cauchy problem

y′ = F (x, y, µ), y(x0) = y0
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is continuous with respect to λ = (x0, y0, µ) at any point λ∗ = (x∗0, y
∗
0, µ

∗) ∈ D ×Q.
Here Q is an arbitrary closed bounded set in Rk, P is a closed set in D, D is an open set in Rm+1.

Remark 2.8. Proof of the theorem is based on the abstract theorem for operators Tλ : M → U .
In order to use this theorem we need

1) to construct a closed ball M in a Banach space U ,
2) to show that Tλ is a contraction and

Tλu(λ
∗) → Tλ∗u(λ

∗) = u(λ∗) where λ→ λ∗.

Proof.
We fix the point

λ∗ = (x∗0, y
∗
0, µ

∗), (x∗0, y
∗
0) ∈ D, µ∗ ∈ Q.

By virtue of the local theorem of existence and uniqueness there exists a solution y = φ(x, λ∗) of the
Cauchy problem in the interval (a, b), x∗0 ∈ (a, b) and (x, φ(x, λ∗)) ∈ D, ∀x ∈ (a, b).

We choose a closed and bounded interval [α, β] ⊂ (a, b). Let the operator Tλ be defined by

(Tλy)(x) = y0 +
∫ x

x0

F (t, y(t), µ)dt.

Let us consider the function
y1(x) = φ(x, λ∗) + heL(x−α).

Lemma 2.2. ∀L > 0, ∃h > 0 that ∀x ∈ [α, β], ∀s ∈ [0, 1] ⇒ ((1−s)φ(x, λ∗)+sy1(x), x) ∈ D.
Proof (of the lemma).
Assume the opposite assertion, i.e.

∃L > 0, ∀h, ∃x ∈ [α, β], ∃s ∈ [0, 1] ⇒ ((1− s)φ(x, λ∗) + sy1(x), x) /∈ D.

Because h is arbitrary, for example, it can be hn =
1

n
, then there are xn ∈ [α, β] and sn ∈ [0, 1] that

((1− sn)φ(xn, λ
∗) + sny1(xn), xn) /∈ D. By virtue of the boundedness of {xn} there is a subsequence

xnk
−→
k→∞

x∗ ∈ [α, β]. From continuity of the function φ(x, λ∗) we have that

(φ(xnk
, λ∗) + snk

1

nk
eL(xnk

−α), xnk
) −→
k→∞

(y∗, x∗).

where y∗ = φ(x∗, λ
∗). Hence, the point (y∗, x∗) ∈ D. For the open set D there is δ > 0 that if

‖ (y, x) − (y∗, x∗) ‖2< δ, then (y, x) ∈ D. By constructing the sequence {xnk
} there is N that

∀k > N

‖ (φ(xnk
, λ∗) + snk

1

nk
eL(xnk

−α), xnk
)− (y∗, x∗) ‖2< δ.

Therefore, ∀k > N the points (φ(xnk
, λ∗) + snk

1
nk
eL(xnk

−α), xnk
) belong to D. It contradicts to the

assumption that (φ(xnk
, λ∗) + snk

1
nk
eL(xnk

−α), xnk
) /∈ D. The lemma is proved.

Exercise 2.20. Prove that ∀L ∃h > 0 that ∀x ∈ [α, β], ∀s ∈ [0, 1] ⇒

((1− s)φ(x, λ∗) + sy2(x), x) ∈ D,

where y2(x) = φ(x, λ∗)− heL(x−α).
Thus, from the lemma and the exercise we get

∀L > 0, ∃h, ∀x ∈ [α, β], ∀s ∈ [0, 1] ⇒ ((1− s)y1(x) + sy2(x), x) ∈ D.
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For example, for L = 1 there exists h1 that the strip

Sth1 = {(x, y)| x ∈ [α, β], y2(x) ≤ y ≤ y1(x)} ⊂ D.

This strip Sth1 is a closed set. By virtue of the condition of the theorem ∃L(Sth1) (Lipschitz constant).
For L(Sth1), ∃h2 that the strip Sth2 ⊂ D. We will take h = min(h1, h2). Then the strip Sth ⊂ D
and the function F (x, y, µ) satisfies a Lipschitz condition on it with the constant L = L(Sth1).

The set U = C([α, β]) with the norm ‖ y ‖= max
x∈[α,β]

(e−L(x−α)|y(x)|) is a Banach space (U, ‖ · ‖).
Denote the ball

M = {y(x) ∈ U | (x, y(x)) ∈ Sth}

is a closed set in U . We study the operator Tλ:

Tλy = y0 +
∫ x

x0

F (t, y(t), µ)dt, y ∈ U.

Now we check a satisfaction of the conditions of the theorem for an operator equation with a param-
eter.

First, ∀λ the operators Tλ : M → U . Check it as exercise.
Second, ∀λ the operators Tλ are contractions with the same number 0 < q < 1:

‖ Tλy1 − Tλy2 ‖≤ q ‖ y1 − y2 ‖, ∀y1, y2 ∈M

Check it as exercise (hint: proof is the same as the Picard theorem).
Third, Tλy

∗ −→
λ→λ∗

Tλ∗y
∗ = y∗. Really,

Tλy
∗ − Tλ∗y

∗ = y0 − y∗0 +
∫ x
x0
F (t, y∗(t), µ)dt−

∫ x
x∗0
F (t, y∗(t), µ∗)dt

= (y0 − y∗0) +
∫ x
x0
F (t, y∗(t), µ)dt− (

∫ x
x0
F (t, y∗(t), µ∗)dt+

∫ x0
x∗0
F (t, y∗(t), µ∗)dt)

= (y0 − y∗0) +
∫ x
x0

(F (t, y∗(t), µ)− F (t, y∗(t), µ∗))dt+
∫ x∗0
x0
F (t, y∗(t), µ∗)dt

≡ I1 + I2 + I3

where

I1 = y0 − y∗0; I2 =
∫ x

x0

(F (t, y∗(t), µ)− F (t, y∗(t), µ∗))dt; I3 =
∫ x∗0

x0

F (t, y∗(t), µ∗)dt.

It is simple to prove that I1 −→
λ→λ∗

0 and I3 −→
λ→λ∗

0. The last follows from the property that the

function F ∈ C(D ×Q) and (t, y∗(t)) ∈ Sth, where Sth is a closed, bounded set in D. Then there is
the maximum

R = max
(t,y)∈Sth

| F (t, y, µ∗)|

By using it we have

|I3| = |
∫ x∗0

x0

F (t, y∗(t), µ∗)dt| ≤ R|x0 − x∗0| −→
λ→λ∗

0.

Now we prove that |I2| −→
λ→λ∗

0. In order to do it we show that

∀ε > 0, ∃δ > 0, ∀µ, |µ− µ∗| < δ, ∀(t, y) ∈ Sth ⇒ |F (t, y, µ)− F (t, y, µ∗)| < ε.

Assume the opposite assertion

∃ε0, ∀δ, ∃µ, |µ− µ∗| < δ, ∃(t, y) ∈ Sth ⇒ |F (t, y, µ)− F (t, y, µ∗)| ≥ ε0.
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For example, δ can be taken as δ = 1
n
, then we have the sequence of points

{(tn, yn, µn)} ∈ Sth ×Q

in the closed and bounded set Sth×Q. There is the point (t∗, y∗, µ∗) ∈ Sth×Q that (tnk
, ynk

, µnk
) −→
k→∞

(t∗, y∗, µ∗).
Let us consider

|F (tnk
, ynk

, µnk
)− F (tnk

, ynk
, µ∗)| ≤

≤ |F (tnk
, ynk

, µnk
)− F (t∗, y∗, µ∗)|+ |F (t∗, y∗, µ∗)− F (tnk

, ynk
, µ∗)|.

Because F (x, y, µ) ∈ C(D ×Q) and (tnk
, ynk

, µnk
) −→ (t∗, y∗, µ∗), then ∀ε > 0, ∃N, ∀k > N

|F (tnk
, ynk

, µnk
)− F (t∗, y∗, µ∗)| < ε, |F (t∗, y∗, µ∗)− F (tnk

, ynk
, µ∗)| < ε.

For example, ε = ε0/2. It means that we get the contradiction: at the same time

|F (tnk
, ynk

, µnk
)− F (tnk

, ynk
, µ∗)| < ε0

and
|F (tnk

, ynk
, µnk

)− F (tnk
, ynk

, µ∗)| ≥ ε0.

Remark. The property |I2| −→
λ→λ∗

0 can be easier proven noticing that any continuous function

on a closed and bounded set is equicontinuous.
Now we show that I3 −→

µ→µ∗
0, i.e.

∀ε > 0, ∃δ > 0, |µ− µ∗| < δ ⇒

⇒ |I3| = |
∫ x

x0

(F (t, y∗(t), µ)− F (t, y∗(t), µ∗))dt| < ε.

Really, ∀ε > 0, ∃δ > 0, ∀µ, |µ− µ∗| < δ, ∀(t, y) ∈ Sth that

|F (t, y, µ)− F (t, y, µ∗)| <
ε

β − α
.

Substitution it into I3 gives

|I3| ≤ |
∫ x

x0

|F (t, y∗(t), µ)− F (t, y∗(t), µ∗)|dt|

≤ ε

β − α
|
∫ x

x0

dt| = ε

β − α
|x− x0| ≤ ε.

2

Another an important question is about existence of partial derivatives of the solution y = φ(x, λ)
with respect to parameters. We will consider it later.

2.5 Behavior of the solution at the ends of maximal interval

Let us consider a system of ODE’s
y′ = F (x, y).

Assume that we have two solutions y = φ1(x), x ∈ (a1, b1) and y = φ2(x), x ∈ (a2, b2), defined in an
open domain D ⊂ Rm+1.
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Definition 2.13. If the interval (a2, b2) ⊂ (a1, b1) and

φ1(x) = φ2(x), x ∈ (a2, b2),

then the solution y = φ1(x) is called an extension of the solution y = φ2(x), (in particular, if
(a2, b2) = (a1, b1)).

Definition 2.14. A solution y = φ(x), x ∈ (a, b) is called a nonextendable if there is no its
extension excepting itself. A nonextendable solution is also called a maximal solution.

Theorem 2.12. (existence of the maximal solution). Let F (x, y) ∈ C(D) and satisfy a Lipschitz
condition in D, then

(a) there exists a maximal solution of the Cauchy problem

y′ = F (x, y), y(x0) = y0, ∀(x0, y0) ∈ D,

the maximal solution is unique;
(b) if a maximal solution of the equations y′ = F (x, y) coincides with some solution of these

equations at one point, then the maximal solution is an extension of this solution;
(c) if any two maximal solutions coincide at one point, then they have the same intervals, where

they are defined and they coincide at every point of this interval.
Proof.
Recall that because of the Lipschitz condition one has uniqueness of solution on the interval where

it is defined.
First, we construct a nonextendable solution. Let (x0, y0) be any point in D. The Cauchy problem{

y′ = F (x, y)
y(x0) = y0

(2.13)

has a solution y = φ(x), x ∈ J = (sl, sr). Any solution y = φ(x) is defined on its own interval J .
We will denote by Γl a set of the left ends of these intervals and Γr is a set of the right ends of the
intervals. Let

ml = inf(Γl), mr = sup(Γr).

We construct the function φ̃(x) on the interval (ml,mr) by the following way. If x∗ is an arbitrary
point of the interval (ml,mr), then there exists a solution of the Cauchy problem φ(x), x ∈ J with
J ⊂ (ml,mr) and x∗ ∈ J . We take φ̃(x∗) = φ(x∗). The value of the function φ̃(x∗) does not
depend on the solution. Really, let φ1(x), x ∈ J1 be another solution of the Cauchy problem (2.13),
with the interval which contains the point x∗ ∈ J1. By virtue of uniqueness of the solution of the
Cauchy problem, we have φ(x∗) = φ1(x∗). Therefore, the function φ̃(x) is uniquely defined for any
point x ∈ (ml,mr). The function φ̃(x) is a solution of the Cauchy problem (2.13), because in the
neighborhood of any point x∗ ∈ (ml,mr) it coincides with some solution of the Cauchy problem
(2.13).

Let us prove that φ̃(x), x ∈ (ml,mr) is a nonextendable solution of the Cauchy problem (2.13).
Assume that φ1(x), x ∈ (sl, sr) is an extension of the solution φ̃(x), x ∈ (ml,mr). Since φ1(x), x ∈
(sl, sr) is a solution of the Cauchy problem (2.13), then sl ≥ ml and mr ≥ sr. By virtue of the
uniqueness theorem φ1(x) = φ̃(x), x ∈ (sl, sr). This means that φ̃(x) is an extension of φ1(x).

Assume that there are two nonextandable solutions φ1(x), x ∈ (s
(1)
l , s(1)

r ) and φ2(x), x ∈ (s
(2)
l , s(2)

r )

of the Cauchy problem (2.13). By virtue of uniqueness φ1(x) = φ2(x), x ∈ (s
(1)
l , s(1)

r ) ∩ (s
(2)
l , s(2)

r ). If

s
(1)
l > s

(2)
l , then the function

φ(x) =

{
φ1(x), x ∈ (s

(1)
l , s(1)

r )

φ2(x), x ∈ (s
(2)
l , s

(1)
l )

}
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is an extension of the function φ1(x), x ∈ (s
(1)
l , s(1)

r ). This contradicts to the assumption that

φ1(x), x ∈ (s
(1)
l , s(1)

r ) is a nonextendable solution of the Cauchy problem (2.13). Thus, there exists
only one nonextendable solution of the Cauchy problem (2.13).

Assume that φ(x), x ∈ (ml,mr) is a maximal (nonextendable) solution of the equations y′ =
F (x, y), which coincides with some solution of these equations φ1(x), x ∈ (sl, sr) at a point x0:

φ(x0) = φ1(x0).

The point x0 can be chosen as the initial point for the Cauchy problem (2.13) with the value y(x0) =
φ0. Thus, the maximal solution φ(x), x ∈ (ml,mr) and the solution φ1(x), x ∈ (sl, sr) are solutions
of the same Cauchy problem. As it has proven, then sl ≥ ml and mr ≥ sr, φ(x) = φ1(x), x ∈ (sl, sr).
Therefore the solution φ(x), x ∈ (ml,mr) is an extension of the solution φ1(x), x ∈ (sl, sr).

Now we prove that if φ1(x), x ∈ J1 is a nonextendable solution of the equation y′ = F (x, y)
and φ2(x), x ∈ J2 is another nonextendable solution, and at some point x0 ∈ J1 ∩ J2 they coincide
φ1(x0) = φ2(x0), then J1 = J2 and φ1(x) = φ2(x), ∀x ∈ J = J1 = J2. Really, let x0 ∈ J1 ∩ J2 be any
point where

φ1(x0) = φ2(x0).

If one takes x0 as the initial point for the Cauchy problem, then from the previous it follows that
φ1(x) is an extension of φ2(x) and φ2(x) is an extension of φ1(x). This means that J1 = J2 and

φ1(x) = φ2(x), ∀x ∈ J1 = J2.

2

The statements of the previous theorem are valid if the Lipschitz condition in an open set D
is exchanged with the property that for any closed and bounded set P ⊂ D the function F (x, y)
satisfies a Lipschitz condition in P .

Exercise 2.21. Prove uniqueness of the Cauchy problem in the case where a function F (x, y),
which for any closed bounded set P ⊂ D the function F (x, y) satisfies a Lipschitz condition in P .

Theorem 2.13. (behavior of a maximal solution at the ends). Let F (x, y) ∈ C(D) with an
open set D. Assume that for any closed bounded set P ⊂ D the function F (x, y) satisfies a Lipschitz
condition in P with a Lipschitz constant L(P ). Then for any closed bounded set E ⊂ D and any
maximal solution φ(x), x ∈ (ml,mr) there exist sl and sr such that sl > ml, mr > sr and for all
x ∈ (ml, sl) and x ∈ (sr,mr) the point (x, φ(x)) /∈ E.

Proof.
The proof is given for existence of sr.
In the case mr = ∞, the existence of sr is trivial. Since the set E is bounded there is x∗ = max

(x,y)∈E
˜(x). For any x ≥ x∗ one has (x, φ(x)) /∈ E.

Let mr be finite (mr <∞). One has to prove that

∃sr < mr, ∀x, sr < x < mr ⇒ (x, φ(x)) /∈ E.

Assume the opposite:
∀sr < mr, ∃x, sr < x < mr ⇒ (x, φ(x)) ∈ E.

Taking sr = mr − 1
n

one can construct the sequence of points {xn} such that mr − 1
n
< xn < mr and

(xn, φ(xn)) ∈ E. The sequence {xn} is convergent {xn} −→
n→∞

mr. Because E is a closed and bounded

set there is a subsequence1 {(xnk
, φ(xnk

))} −→ (mr, φ∗)) ∈ E. Using the Picard theorem one gets
that for the Cauchy problem {

y′ = F (x, y)
y(mr) = φ∗

(2.14)

1Notice that a maximal solution is defined in open interval (ml,mr).
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there exists only one solution y = φ∗(x), which is defined in the interval [mr − h,mr + h], where
h > 0 is some number. Let us consider the solutions of the Cauchy problems{

y′ = F (x, y)
y(xnk

) = φ(xnk
)

(2.15)

Because (xnk
, φ(xnk

)) → (mr, φ∗), then by virtue of the continuity theorem there exists N , such
that ∀k > N the solutions y = φk(x) of the Cauchy problems (2.15) are defined in the interval
[mr − h,mr + h]. By virtue of uniqueness φk(x) = φ(x), x < mr. Therefore, ∀x < mr

lim
k→∞

φk(x) ≡ φ(x) = φ∗(x).

This means that the function

y =

{
φ(x), if x ∈ (ml,mr)
φ∗(x), if x ∈ [mr,mr + h)

is a solution and it is an extension of the solution φ(x), x ∈ (ml,mr). This contradicts the property
(to be nonextendable) of a maximal solution. 2

Corollary 2.3. (for autonomous systems). Let F (y) ∈ C(Dy), where Dy is an open set in Rm.
Assume that for any closed bounded set Py ⊂ Dy the function F (y) satisfies a Lipschitz condition
in Py with a Lipschitz constant L(Py). Then for any closed bounded set Ey ⊂ Dy and any maximal
solution φ(x), x ∈ (ml,mr) with ml 6= −∞ (or mr 6= ∞) there exists sl > ml (or mr > sr) such that
for all x ∈ (ml, sl) (or x ∈ (sr,mr)) the point φ(x) /∈ Ey.

Proof.
The proof is given for the case ml 6= −∞.
Let us define

D = {(x, y)| x ∈ R1, y ∈ Dy}.

If P ⊂ D is a closed and bounded set in D, then the set Py = {y | (x, y) ∈ P} is closed and bounded
in Dy. For any m ∈ (ml,mr) the set Em = {(x, y)| x ∈ [ml,m], y ∈ Ey} ⊂ D. From the previous
theorem there exists sl(m) > ml, sl(m) ∈ (ml,mr) such that (x, φ(x)) /∈ Em, ∀x ∈ (ml, sl(m)). Let
s∗l (m) = min(m, sl(m)). Because (ml, sl(m)) ⊆ [ml,m], the statement (x, φ(x)) /∈ Em is only able
for φ(x) /∈ Ey. Notice that if m1 > m2, then s∗l (m1) ≥ s∗l (m2).

Let sl = supm(s∗l (m)). Since the function s∗l (m) is nondecreasing, one obtains that ml < sl ≤ mr.
For any x ∈ (ml, sl) there exists m such that x < s∗l (m). With this m it is proven that φ(x) /∈ Ey. 2

Corollary 2.4. Let F (x, y) ∈ C(Rm+1), and for any closed bounded set P ⊂ Rm+1 the function
F (x, y) satisfies a Lipschitz condition in P with a Lipschitz constant L(P ). If φ(x), x ∈ (ml,mr) is
a maximal solution with ml 6= −∞ (or mr 6= ∞), then for x→ ml + 0 (or x→ mr − 0)

|φ(x)| → ∞.

Exercise 2.22. Prove the corollary.

Lemma 2.3. Let v(x), x ∈ (a, b) with v(a) = 0 satisfies the inequality

v′(x) ≤ α+ γv(x), γ 6= 0

then
v′(x) ≤ αeγ(x−a).
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Proof.

Integrating the inequality

(
v(x)e−γ(x−a)

)′
= (v′(x)− γv(x))e−γ(x−a) ≤ αe−γ(x−a),

one has

v(x)e−γ(x−a) ≤ −α
γ

(e−γ(x−a) − 1)

or

v(x) ≤ −α
γ

(1− e−γ(x−a)).

Thus,

v′(x) ≤ α+ γv(x) ≤ α− α(1− e−γ(x−a)) = αe−γ(x−a).

2

Corollary 2.5. (global theorem). Let F (x, y) ∈ C(D), where D is an open strip

D = {(x, y) ∈ Rm+1 | x ∈ (ml,mr), y ∈ Rm}.

Assume that for any closed bounded set P ⊂ D the function F (x, y) satisfies a Lipschitz condition
in P with a Lipschitz constant L(P ). If F (x, y) satisfies the inequality

|F (x, y)| ≤M(x) +N(x)|y|, ∀(x, y) ∈ D,

where M(x) and N(x) are continuous, non negative functions in (ml,mr). Then the unique nonex-
tendable solution of the Cauchy problem

{
y′ = F (x, y)
y(x0) = y0, (x0, y0) ∈ D

(2.16)

exists on the entire interval (ml,mr).

Proof.

Let y(x), x ∈ (α, β) be the maximal solution of the Cauchy problem (2.16). Note that it is
unique and nonextendable. Suppose that β < mr. Then there are constants M1 and N1 such that
M(x) ≤M1 and N(x) ≤ N1 ∀x ∈ [x0, β]. Therefore,

|y(x)| ≤ |y0|+M1(β − x0) +N1

∫ x

x0

|y(s)| ds, ∀x ∈ [x0, β).

Thus, choosing v(x) =
∫ x
x0
|y(s)| ds, and using the lemma, one has

|y(x)| ≤ (|y0|+M1(β − x0))e
N1(β−x0), ∀x ∈ [x0, β).

This means that y(x), ∀x ∈ [x0, β) remains in a closed bounded set, which contradicts to the previous
theorem. Hence, β = mr. Similarly, one proves that α = ml. 2
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2.6 Dynamical systems

Here we study systems of the type
ẋ = F (x). (2.17)

In this section it is assumed that F (x) ∈ C1(Rm).

Definition 2.15. An autonomous system (2.17) is called a dynamical system.

Definition 2.16. A point x ∈ Rm where F (x) = 0 is called a critical point of a dynamical
system.

Let x = Φ(t), t ∈ (a, b) be a maximal solution of a dynamical system (2.17). The curve in Rm:

l = {x | x = Φ(t), t ∈ (a, b)} (2.18)

is called a trajectory of system (2.17) in the phase space Rm.

Theorem 2.14. Let ρ(x) ∈ C1(Rm) and ρ(x) 6= 0 for all x ∈ Rm. Then the sets of trajectories
of system (2.17) and the system

ẋ = ρ(x)F (x) (2.19)

coincide.
Proof.
For the sake of simplicity we assume that ρ > 0. Let the curve l be a trajectory of system (2.17).

Then, by virtue of the definition, there is a solution x = Φ(t) of system (2.17) that the points of
the trajectory are presented by (2.18). In order to prove the theorem we need to find a solution
x = ψ(λ), λ ∈ (a′, b′) of system (2.19) that the sets l and

l′ = {x | x = ψ(λ), λ ∈ (a′, b′)}

coincide. Assuming that ψ(λ) = Φ(t(λ)) we obtain:

dψ(λ)

dλ
= ρ(ψ(λ))F (ψ(λ)) =

dΦ(t(λ))

dt

dt(λ)

dλ
= F (Φ(t(λ)))

dt(λ)

dλ
.

Therefore, for the proof it is enough to find a function t(λ) such that

dt(λ)

dλ
= ρ(Φ(t(λ))).

First of all, we find the interval (a′, b′) on which the function t(λ) is defined. Because ρ > 0, then
the function

λ(t) =
∫ t

t0

1

ρ(Φ(τ))
dτ

is a monotonously increasing and continuously differentiable function. The inverse function t = t(λ)
is a continuously differentiable function on the interval (a′, b′), where

a′ = lim
t→a+0

λ(t), b′ = lim
t→b−0

λ(t).

By the construction of the function

ψ(λ) = Φ(t(λ)), λ ∈ (a′, b′)

is a solution of the equation (2.19). Therefore for any point x of the trajectory l there exists t ∈ (a, b)
that x = Φ(t) and there is λ ∈ (a′, b′) that x = Φ(t(λ)) = ψ(λ). 2
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For studying dynamical systems it is convenient to have the interval (a, b) as the infinite interval

(−∞,∞). If F (x) ∈ C(Rm), then ρ(x) =
1√

1 + F 2(x)
∈ C(Rm) and ρ(x)F (x) is bounded:

|ρ(x)F (x)| ≤ 1.

The solution of the Cauchy problem

ẋ = ρ(x)F (x), x(t0) = x0

is defined for any x0 ∈ Rm on the infinite interval (−∞,∞)2. Therefore, further we assume for
trajectories that they are defined on the infinite interval (−∞,∞). If it is not so, then we regard the
system

ẋ = ρ(x)F (x)

with ρ(x) =
1√

1 + F 2(x)
.

Theorem 2.15. Two trajectories l1 and l2 of a dynamical system ẋ = F (x) are either not
crossed or completely coincide.

Proof.
Assume that two trajectories

l1 = {x | x = Φ1(t), t ∈ R},
l2 = {x | x = Φ2(t), t ∈ R}

have the common point: Φ1(t1) = Φ2(t2). Thus two functions

φ1(t) = Φ1(t), t ∈ R,
φ2(t) = Φ2(t+ c), t ∈ R,

satisfy the same Cauchy problem:

ẋ = F (x), x(t1) = φ1(t1) = Φ1(t1) = Φ2(t1 + c) = φ2(t1),

where c = t2 − t1. By virtue of uniqueness of a solution of the Cauchy problem

φ1(t) = φ2(t), ∀t ∈ R.

This means that the trajectories l1 and l2 coincide. 2

Define three classes of the trajectories:

(I) trajectories without selfcrossing: Φ(t1) 6= Φ(t2), ∀t1 6= t2,

(II) periodic trajectories: ∃T > 0 that Φ(t+ T ) = Φ(t) and

Φ(t1) 6= Φ(t2), ∀t1, t2, 0 < t1 < t2 < T,

(III) stationary trajectories: Φ(t) = c, ∀t ∈ R.
2It follows from the exercise about global solution.
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Theorem 2.16. All trajectories are seperated in the three classes: each trajectory belongs to
either class (I), or class (II) or class (III).

Proof.
Assume that a trajectory x = Φ(t) does not belong to class (I). One can show that in this case it

belongs to either class (II) or class (III). In fact, because Φ(t) /∈ (I) there exist t1, t2 such that t1 < t2
and

Φ(t1) = Φ(t2).

Let τ = t1 − t2. Thus, Φ(t) and Φ(t+ τ) coincide at the point t = t1. By virtue of of the theorem of
uniqueness of a solution of the Cauchy problem one obtains Φ(t) = Φ(t+ τ), ∀t ∈ R. Let K be the
set of the numbers τ . Apparently, 0 ∈ K, (t2 − t1) ∈ K, and also the set K has the properties:

(i) if τ ∈ K, then (−τ) ∈ K,
(ii) if τ1 ∈ K and τ2 ∈ K, then (τ1 + τ2) ∈ K.
(iii) the set K is closed.
Let us prove, for example, the third property. Assume that the sequence {τn} ∈ K convrges to

some τ . Because
Φ(t) = Φ(t+ τn), ∀t ∈ R

and the function Φ(t) is a continuous function, then

Φ(t) = Φ(t+ τ), ∀t ∈ R.

It means that τ ∈ K or the set K is closed.
The set

K+ = {τ ∈ K | τ > 0}

is not empty, because, for example, (t2 − t1) ∈ K+. There is

T = inf(K+) ≥ 0.

If T > 0, then Φ(t) ∈ (II), and if T = 0, then Φ(t) ∈ (III).
Really, assume that T > 0. Because K is closed, then T ∈ K. It means, that

Φ(t+ T ) = Φ(t), ∀t ∈ R.

By virtue of the property of the infimum

Φ(t1) 6= Φ(t2)

for any t1 and t2 that
0 < t1 < t2 < T.

Therefore, Φ(t) ∈ (II).
Assuming that T = 0 one can prove that K = (−∞,∞). Let τ > 0 be an arbitrary number.

Because T = 0, then there exists the sequence τn ∈ K+ such that lim
n→∞

τn = 0. The numbers

Zn = τn · [
τ

τn
]

belong to K+. Here we use the notation [ k ] for an integer part of the number k and { k } for a
fractional part of the number k. For example,

τ

τn
= [

τ

τn
] + { τ

τn
}.
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Therefore
τ = τn[

τ

τn
] + τn{

τ

τn
} = Zn + τn{

τ

τn
}

Note that lim
n→∞

(τn{ τ
τn
}) = 0. Since K is closed one obtains

τ = lim
n→∞

Zn ∈ K.

This means that
Φ(t+ τ) = Φ(t), ∀t, τ ∈ (−∞,∞).

It is possible only for the solution
Φ(t) = c, ∀t ∈ R,

where c is a constant. 2

2.7 The perturbation equation

Lemma 2.4. (Hadamard). Let g(λ, z) ∈ C(D) and
∂g

∂zj
(λ, z) ∈ C(D), (j = 1, 2, ..., q), where D

is a convex domain with respect to z = (z1, z2, ..., zq). Then there are functions hj(λ, z
(1), z(2)) ∈

C(D1) (j = 1, 2, ..., q) such that hj(λ, z, z) = ∂g
∂zj

(λ, z) and

g(λ, z(2))− g(λ, z(1)) =
q∑
j=1

hj(λ, z
(1), z(2))(z

(2)
j − z

(1)
j ),

where D1 = {(λ, z(1), z(2)) ∈ R2q+1| (λ, z(1)) ∈ D, (λ, z(2)) ∈ D}.
Proof.
For w(s) = z(1) + s(z(2) − z(1)), s ∈ [0, 1] one has

g(λ, z(2))− g(λ, z(1)) = g(λ,w(1))− g(λ,w(0)) =
∫ 1

0

∂

∂s
g(λ,w(s))ds,

where
∂

∂s
g(λ,w(s)) =

q∑
j=1

∂g

∂zj
(λ,w(s))

dwj
ds

(s) =
q∑
j=1

∂g

∂zj
(λ,w(s))(z

(2)
j − z

(1)
j ).

Therefore,

hj(λ, z
(1), z(2)) =

∫ 1

0

∂g

∂zj
(λ,w(s))ds, hj(λ, z, z) =

∫ 1

0

∂g

∂zj
(λ, z)ds =

∂g

∂xj
(λ, z).

Because the functions
∂g

∂zj
are continuous in D, then hj(λ, z

(1), z(2)) ∈ C(D1). 2

We study ordinary differential equations with continuous functions F (x, y, µ) ∈ C(D×Q), where
(x, y) belongs to an open set D ⊂ Rm+1, µ belongs to an open set Q in Rk. Assume that for any
closed set P ⊂ D the function F (x, y, µ) satisfies a Lipschitz condition in the set P ×Q, i.e.

∃L = L(P ) > 0, ∀(x, y1) ∈ P, (x, y2) ∈ P and µ ∈ Q⇒
|F (x, y2, µ)− F (x, y1, µ)| ≤ L|y1 − y2|.

(2.20)

Theorem 2.17. (differentiability with respect to parameters). Let a function F (x, y, µ) satisfies a
Lipschitz condition (2.20) in P ×Q for any closed and bounded set P ⊂ D and has continuous partial
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derivatives
∂F

∂µj
∈ C(D ×Q),

∂F

∂yl
∈ C(D ×Q), (j = 1, 2, ..., k; l = 1, 2, ...,m). Then ∀(x0, y0) ∈

D there exists unique solution φ(x, µ) of the Cauchy problem

y′ = F (x, y, µ), y(x0) = y0. (2.21)

This solution has the following properties:
a) φ(x, µ) is defined in some open set T of the space of the variables (x, µ);

b) φ(x, µ) has continuous derivatives with respect to µj:
∂ϕ

∂µj
(x, µ) ∈ C(T ), (j = 1, 2, ..., k), which

are differentiable with respect to x and

∂2φ

∂x∂µj
(x, µ) =

∂2φ

∂µj∂x
(x, µ) ∈ C(T ), (j = 1, 2, ..., k).

Proof.
Let µ∗ ∈ Q be given and φ(x, µ∗), x ∈ (x1, x2) be a maximal solution of the Cauchy problem

(2.21) with µ = µ∗. For any closed interval [r1, r2] ⊂ (x1, x2) there exists a number a such that

∆̂ = {(x, y)| |y − φ(x, µ∗)| ≤ a, x ∈ [r1, r2]} ⊂ D.

Exercise 2.23. Prove the existence of a.
Because Q is open, then ∃b > 0 such that if |µ − µ∗| ≤ b, then µ ∈ Q. From the continuity

theorem (with respect to parameters) there is δ > 0 ( 2δ < b ) that for any µ which satisfies the
inequality that |µ− µ∗| < 2δ there exists the solution φ(x, µ) of the Cauchy problem (2.21) defined
in the interval [r1, r2] and satisfies the inequality

|φ(x, µ)− φ(x, µ∗)| < a.

Let us define the open set

∆ = {(x, y, µ)| x ∈ (r1, r2), |y − φ(x, µ∗)| < a, |µ− µ∗| < 2δ}.

By the construction ∆ ⊂ (D ×Q) and it is a convex set with respect to (y, µ).
Let µ(1) ∈ Q satisfy the inequality |µ(1) − µ∗| < δ. If |τ | < δ and

µ(2) = (µ1, µ2, . . . , µl−1, µl + τ, µl+1, . . . , µk) = µ(1) + τ(0, 0, . . . , 1, 0, . . . , 0),

then |µ(2) − µ∗| < 2δ. Therefore ∀x ∈ [r1, r2] and ∀µ1 such that |µ1 − µ∗| < δ one has

|φ(x, µ(1))− φ(x, µ∗)| < a, |φ(x, µ(2))− φ(x, µ∗)| < a.

This means that (x, φ(x, µ(i)), µ(i)) ∈ ∆, ∀x ∈ [r1, r2], (i = 1, 2). Applying the Hadamard lemma
one obtains

Fj(x, φ(x, µ(2)), µ(2))− Fj(x, φ(x, µ(1)), µ(1)) =

=
m∑
α=1

hjα(x, µ
(1), µ(2))(φα(x, µ

(2))− φα(x, µ
(1))) +

k∑
β=1

hjm+β(x, µ
(1), µ(2))(µ

(2)
β − µ

(1)
β ).

Here hjα = hjα(x, µ
(1), µ(2)), (α = 1,m+ k) are continuous functions. By the constructon µ(2) these

functions are continuous functions of (x, µ(1), τ). Let us consider the differences

ψj(x, µ
(1), τ) =

φj(x, µ
(2))− φj(x, µ

(1))

τ
, τ 6= 0.
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Because y = φ(x, µ(1)) and y = φ(x, µ(2)) are solutions

dψj(x, µ
(1), τ)

dx
=

1

τ
(Fj(x, φ(x, µ(2)), µ(2))− Fj(x, φ(x, µ(1)), µ(1)))

=
m∑
α=1

hjα(x, µ
(1), τ)ψα(x, µ

(1), τ) + hjm+l(x, µ
(1), τ).

These relations are valid for any (x, µ(1), τ) such that

x ∈ (r1, r2), |µ1 − µ∗| < δ, |τ | < δ, τ 6= 0.

Thus, the functions ψj(x, µ
(1), τ), (τ 6= 0) satisfy the linear system of ordinary differential equations

dyj
dx

=
m∑
α=1

hjα(x, µ
(1), τ)yα + hjm+l(x, µ

(1), τ) (2.22)

with the initial data

yj(x0) = ψj(x0, µ
(1), τ) =

φj(x0, µ
(2))− φj(x0, µ

(1))

τ
= 0. (2.23)

The Cauchy problem (2.22), (2.23) has unique solution yj(x) = χj(x, µ
(1), τ) and this solution is

continuous in the set:
x ∈ (r1, r2), |µ(1) − µ∗| < δ, |τ | < δ.

By virtue of the uniqueness one obtains

ψj(x, µ
(1), τ) = χj(x, µ

(1), τ), τ 6= 0.

Thus, there exists the limit:

lim
τ→0

ψj(x, µ
(1), τ) = lim

τ→0
χj(x, µ

(1), τ) = χj(x, µ
(1), 0).

By the definition of this limit it is a partial derivative with respect to µl:

∂φj
∂µl

(x, µ(1)) ≡ lim
τ→0

ψj(x, µ
(1), τ) = χj(x, µ

(1), 0).

By virtue of the continuity the functions χj(x, µ
(1), 0) are continuous functions in the set

T = {(x, µ) | x ∈ (r1, r2), |µ(1) − µ∗| < δ}. (2.24)

Therefore the partial derivatives ∂φj

∂µl
(x, µ(1)) are continuous in this set.

Because
∂φj
∂µl

(x, µ(1)) = χj(x, µ
(1), 0) and χj(x, µ

(1), 0) satisfy the Cauchy problem (2.22), (2.23),

there is the derivative
d

dx
(
∂φj
∂µl

(x, µ(1))) =
d

dx
χj(x, µ

(1), 0)

which is a continuous function in the set (2.24). There is proven that d
dx

(
∂φj

∂µl
(x, µ(1))

)
are continuous

functions in the simple connected set (2.24).

Now we prove that the functions
∂

∂µl
(
dφj
dx

)(x, µ(1)) satisfy the same property. In fact,

dφj
dx

(x, µ(1)) = Fj(x, φ(x, µ(1)), µ(1)).
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Because the functions Fj(x, y, µ) (right side of this equality) is a continuously differentiable function
with respect to y and µl, then the functions Fj(x, φ(x, µ(1)), µ(1)) are continuously differentiable
functions with respect to µl (chain rule). This means that the functions(

∂

∂µl
(
dφj
dx

)

)
(x, µ(1))

are continuous functions in the set (2.24). Because (x, µ(1)) is an arbitrary point of the set (2.24)
and

d

dx
(
∂φj
∂µl

) =
∂

∂µl
(
dφj
dx

),

then the theorem is proven. 2

Remark 2.9. Here we used the following theorem. If a function f(x, y) has continuous partial

derivatives
∂(2)f

∂x∂y
(x, y) and

∂(2)f

∂y∂x
(x, y) in a simple connected set D, then

∂(2)f

∂x∂y
(x, y) =

∂(2)f

∂y∂x
(x, y), (x, y) ∈ D.

Remark 2.10. The Cauchy problem
dy

dx
= F (x, y, µ)

y(x0) = y0

can be reduced to the equivalent Cauchy problem
dz

dt
= F̂ (t, z, µ̂)

z(0) = 0
,

where
z = y − y0, t = x− x0, F̂ (t, z, µ̂) = F (x0 + t, y0 + z, µ).

Thus, the initial value (x0, y0) can also be considered as parameters.



48 CHAPTER 2. EXISTENCE AND UNIQUENESS



Chapter 3

Linear systems

3.1 Systems of linear equations

We consider a normal system of n first-order DE’s. In the matrix form it can be written as

x′(t) = A(t)x(t) + b(t),

where b(t) and x(t) are column vectors of the length n.

Theorem 3.1. If A(t) ∈ C(J) and b(t) ∈ C(J), then there exists only one solution of the
Cauchy problem: {

x′ = Ax+ b,
x(t0) = x0, t0 ∈ J.

(3.1)

defined on the whole interval J .
Proof.
For proving the theorem one needs to check conditions of the global theorem. Here F (t, x) =

A(t)x+ b(t). Thus, F (t, x) ∈ C(D), where D = {(t, x)| t ∈ J}.For checking the Lipschitz condition
in D one has to study

F (t, x1)− F (t, x2) = A(t)(x1 − x2).

Therefore F (t, x) satisfies a Lipschitz condition in D with the Lipschitz constant L(t) =‖ A(t) ‖2.
2

3.1.1 Fundamental system of solutions

First of all we consider homogeneous systems (b ≡ 0) and establish simple properties of a system of
equations

ẋ = A(t)x. (3.2)

Lemma 3.1. If x = ϕ(t), t ∈ J is a solution of a linear system of ODE’s (3.2), which vanishes
at some point t0 ∈ J : ϕ(t0) = 0, then this solution is equal to zero identically in the interval J :

ϕ(t) = 0, ∀t ∈ J.

Proof follows from the theorem of uniqueness of a solution of the Cauchy problem{
ẋ = A(t)x,
x(t0) = 0.

49
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Lemma 3.2. If ϕ1(t), ϕ2(t), . . . , ϕk(t), t ∈ J are solutions of a linear system of ODE’s (3.2),
then the function

ϕ(t) =
k∑

α=1

cαϕα(t), t ∈ J

is a solution of this system. Here cα, (α = 1, 2, . . . , k) , are arbitrary constants.

Exercise 3.1. Prove the lemma.

Definition 3.1. A system of vector-functions ϕ1(t), ϕ2(t), . . . , ϕk(t), t ∈ J is called a linearly
dependent system of functions if there are constants cα, α = 1, 2, . . . , k at least one of them is not
equal to zero, such that the linear combination

k∑
α=1

cαϕα(t) = 0, ∀t ∈ J.

Otherwise this system of functions is called linearly independent.
From the previous lemmas one can conclude that if at least at one point t = t0 the vectors

ϕ1(t0), ϕ2(t0), . . . , ϕk(t0)

are linearly dependent, then the system of solutions

ϕ1(t), ϕ2(t), . . . , ϕk(t)

is linearly dependent.

Exercise 3.2. Prove the last property.
Hint: There are constants cα such that

∑
α c

2
α 6= 0 and

∑
α cαϕα(t0) = 0. Study the function

ϕ(t) =
∑
cαϕα(t).

Definition 3.2. A linearly independent system of solutions ϕ1(t), ϕ2(t), . . . , ϕm(t), t ∈ J is
called a fundamental system of solutions (here m is an order of the system).

Theorem 3.2. For any linear system of ODE’s (3.2), with A(t) ∈ C(J) there exists a funda-
mental system of solutions

ϕ1(t), ϕ2(t), . . . , ϕm(t), t ∈ J.

Any solution ϕ(t), t ∈ J of this system can be presented as the sum:

ϕ(t) =
m∑
α=1

cαϕα(t), ∀t ∈ J,

with some constants cα, α = 1, 2, . . . ,m.
Proof.
First of all it is being proven that there exists a fundamental system of solutions of (3.2). Assume

that
a1, a2, . . . , am (3.3)

is an arbitrary system of linearly independent constant vectors. One constructs a system of solutions
ϕj(t) by solving the Cauchy problems {

ẋ = A(t)x,
x(t0) = aj.

Because a system of vectors (3.3) is linearly independent, then the solutions ϕj, (j = 1, 2, . . . ,m)
are independent.
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Exercise 3.3. Prove this.
By the definition these solutions compose a fundamental system.
For the second part let us consider any solution ϕ(t) of system (3.2). Because the system of

vectors (3.3) is linearly independent, then there are constants cα, (α = 1, . . . ,m) such that

ϕ(t0) =
m∑
α=1

cαaα.

The solutions ϕ(t) and
∑m
α=1 cαϕα(t) satisfy the same initial value problem and therefore they coin-

cide:

ϕ(t) =
m∑
α=1

cαϕα(t).

2

3.1.2 The Wronskian

Definition 3.3. Let ϕ1(t), ϕ2(t), . . . , ϕm(t), t ∈ J be a system of vector-functions. We compose
m×m matrix

(ϕ1(t), ϕ2(t), . . . , ϕm(t)) . (3.4)

The determinant of this matrix is called the Wronskian:

W (t) = det(ϕ1(t), ϕ2(t), . . . , ϕm(t)), t ∈ J.

Here ϕj(t) is a vector-column

ϕj(t) = (ϕ1j(t), ϕ2j(t), . . . , ϕmj(t))
t.

If the Wronskian is composed by linearly independent solutions of (3.2), then W (t) 6= 0 for
any t ∈ J . If the Wronskian W (t) is composed by a linearly dependent system of vectors, then
W (t) = 0, ∀t ∈ J .

Definition 3.4. If the Wronskian is composed by a fundamental system of solutions, then the
matrix

Φ(t) = (ϕ1(t), ϕ2(t), . . . , ϕm(t)), t ∈ J
is called a fundamental matrix of system (3.2).

Theorem 3.3. Let a matrix

Φ(t) = (ϕ1(t), ϕ2(t), . . . , ϕm(t)), t ∈ J

be an arbitrary m×m matrix with ϕj(t) ∈ C1(J), (j = 1, 2, . . . ,m), t ∈ J , the determinant of which
is not equal to zero for any t ∈ J . Then this matrix is a fundamental matrix only system

ẋ = A(t)x, A(t) ∈ C(J).

Proof.
Since the matrix Φ = (ϕij(t)) composed of vector-columns which are solutions of (3.2), then

ϕ̇ij(t) = Aiαϕαj
(t).

Thus,
AΦ = Φ̇.

By virtue of det Φ 6= 0 there is only one matrix A = Φ̇Φ−1. Because Φ(t) ∈ C1(J) the matrix
A(t) ∈ C(J). 2
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3.1.3 The Liouville formula

Theorem 3.4. (Ostrogradskii-Liouville). Let W (t), t ∈ J be the Wronskian of a fundamental
system of solutions of a linear system of ODE’s

ẋ = A(t)x, A(t) ∈ C(J),

then

W (t) = W (t0)e
∫ t

t0
S(τ)dτ

, t ∈ J,
where S(t) is a trace of the matrix A(t):

S(t) = tr(A(t)) =
∑
α

Aαα(t).

Proof.
Let U = (uij) be an m×m matrix. The determinant detU of the matrix U can be decomposed

δij detU = uiβVβj,

where Vβj is an algebraic cofactor to the element ujβ. Because the cofactor Vαj does not depend on
ujβ, then

∂(detU)

∂ujβ
= Vβj.

If uβj = ϕβj(t), where ϕβj(t) are elements of the matrix Φ(t), then

d

dt
(det Φ) =

∑
α, j

∂(det Φ)

∂ujα
ϕ̇jα =

∑
α, j

ϕ̇jαVαj =
m∑
j=1

(
m∑
α=1

ϕ̇jαVαj) =
m∑
j=1

det(Φj).

Here the matrices Φj(t) are composed from the matrix Φ(t), changing j–th row in matrix Φ(t) by its
derivative.

Remark 3.1. It is obvious that the same formula is valid for the matrixes Φ̂α(t), which are
obtained from the matrix Φ(t), changing α–th column by its derivative.

Assume that χi(t) = (ϕi1(t), ϕi2(t), . . . , ϕim(t)), then

χ̇i(t) = (ϕ̇i1(t), ϕ̇i2(t), . . . , ϕ̇im(t)) = (Aiαϕα1(t), Aiαϕα2(t), . . . , Aiαϕαm(t)) =

= Aiα(ϕα1(t), ϕα2(t), . . . , ϕαm(t)) = Aiαχ
α(t).

Thus after substituting χ̇i in the matrix Φi, one has

det Φi = Aii det(Φ) = AiiW.

Therefore for the Wronskian one obtains the linear equation

Ẇ =
m∑
j=1

det Φj = (
∑
j

Ajj)W = S(t)W.

A solution of this equation is

W (t) = W (t0) exp(
∫ t

t0
S(τ)dτ).

2

Remark 3.2. If Φ(t) is a fundamental matrix, then the Wronskian is either strictly positive or
strictly negative.
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3.1.4 Method of variation of parameters

Any solution of a nonhomogeneous linear system

ẋ(t) = A(t)x(t) + b(t) (3.5)

can be presented as
x = xp + xh,

where xp is a particular solution of (3.5) and xh is a solution of a homogeneous linear system of
equations.

If a fundamental matrix is known, then a particular solution can be found with the help of
quadrature. In fact, let

ϕ1(t), . . . , ϕm(t)

be a fundamental system of solutions of a homogeneous system of equations

ẋ = A(t)x (3.6)

We are looking for a solution of (3.5) of the form

ϕ(t) =
m∑
α=1

cα(t) · ϕα(t).

Because ϕα(t) are solutions of (3.5), then

ϕ̇ =
m∑
α=1

cαϕ̇α +
m∑
α=1

ċαϕα =
m∑
α=1

cα(Aϕα) +
m∑
α=1

ċαϕα.

After substituting ϕ̇ into (3.5) one gets

ϕ̇− (Aϕ+ b) =
m∑
α=1

ċαϕα − b = 0.

It is a system of ODE’s for the functions cα, which can be rewritten in a matrix form

Φċ = b,

where Φ is a fundamental matrix, c(t) is the column

c(t) = (c1(t), c2(t), . . . , cm(t))∗.

Because det(Φ) 6= 0, then ċ = Φ−1b or

c(t) =
∫

Φ−1(τ)b(τ)dτ = c0 +
∫ t

t0
Φ−1(τ)b(τ)dτ

Thus a solution ϕ(t) is

ϕ(t) = Φ(t)(c0 +
∫ t

t0
Φ−1(τ)b(τ)dτ).

In particular, if the matrix Φ(t) satisfies the condition Φ(t0) = Em, where Em is an identical m×m
matrix (in this case a fundamental matrix Φ is called a matrizant), then a solution of the Cauchy
problem {

ẋ(t) = A(t)x(t) + b(t),
x(t0) = x0
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is

x = Φ(t)(x0 +
∫ t

t0
Φ−1(τ)b(τ)dτ).

Remark 3.3. A fundamental matrix satisfies the matrix equation

Φ̇(t) = A(t)Φ(t).

Therefore, a fundamental matrix is a solution of the equation

Ẋ = A(t)X.

Remark 3.4. For two fundamental matrices Φ(t) and Φ̂(t) there is a constant nonsingular
matrix P such that

Φ̂(t) = Φ(t)P.

Exercise 3.4. Prove the last remark.

3.2 Periodic linear systems

Definition 3.5. A linear system of ODE’s (3.5) is called a periodic linear system with the period
τ if

A(t+ τ) = A(t), b(t+ τ) = b(t), ∀t.

Theorem 3.5. For any fundamental matrix Φ(t) of a periodic linear system of ODE’s with
period τ there is a constant nonsingular matrix C such that

Φ(t+ τ) = Φ(t)C.

Remark 3.5. The matrix C is called a main matrix.
Proof.
If a matrix Φ(t) is a fundamental matrix of a periodic linear system of ODE’s, then the matrix

Φ(t+ τ) is a fundamental matrix of the same linear system of ODE’s. In fact,

Φ̇(t+ τ) = A(t+ τ)Φ(t+ τ) = A(t)Φ(t+ τ).

Thus, there is a constant matrix C that

Φ(t+ τ) = Φ(t)C.

2

Theorem 3.6. If Φ(t) and Φ̂(t) are two fundamental matrices of a periodic linear system
of ODE’s with a period τ and main matrices C and Ĉ, then there is a constant matrix P that
Φ̂(t) = Φ(t)P and

Ĉ = P−1CP.
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Proof.
Because Φ̂(t) and Φ(t) are two fundamental matrices, then there is a constant matrix P that

Φ̂(t) = Φ(t)P . It gives

Φ̂(t+ τ) = Φ(t+ τ)P = Φ(t)CP = Φ̂(t)P−1CP.

2

Definition 3.6. Two linear periodic systems Ẋ = A(t)X and Ẏ = Â(t)Y with the same period
τ are called equivalent systems if there is a nonsingular periodic with the period τ matrix S(t) and
fundamental matrices Φ(t) and Ψ(t) (of the systems Ẋ = A(t)X and Ẏ = Â(t)Y , respectively) such
that

Ψ(t) = S(t)Φ(t).

Theorem 3.7. Two linear periodic systems are equivalent systems if and only if there are
fundamental matrices Φ(t) and Ψ(t) of these systems with the same main matrix C.

Proof.
Assume that systems

Ẋ = A(t)X Ẏ = Â(t)Ẏ

are equivalent and Φ(t) is an arbitrary fundamental matrix of the system Ẋ = A(t)X with the main
matrix C. Then Ψ(t) = S(t)Φ(t) is a fundamental matrix of the system Ẏ = Â(t)Y . Therefore,

Ψ(t+ τ) = S(t+ τ)Φ(t+ τ) = S(t)Φ(t+ τ) = S(t)Φ(t)C = Ψ(t)C.

It proves the first part of the statement of the theorem.
Let two periodic systems with the same period have fundamental matrices with the same main

matrix C:
Φ(t+ τ) = Φ(t)C, Ψ(t+ τ) = Ψ(t)C.

Then C = Φ−1(t)Φ(t+ τ) and Ψ(t+ τ) = Ψ(t)Φ−1(t)Φ(t+ τ) or

Ψ(t+ τ)Φ−1(t+ τ) = Ψ(t)Φ−1(t).

If we denote S(t) = Ψ(t)Φ−1(t), then S(t) is a periodic matrix and

Ψ(t) = S(t)Φ(t).

2

Remark 3.6. Because linear systems of ODE’s are uniquely determined by their fundamental
matrices, one can obtain that matrices of equivalent periodic systems are related by

Â(t) = (Ṡ(t) + S(t)A(t))S−1(t).

3.2.1 Algebraic background

For any nonsingular matrix A there is a matrix B such that

AB = BA and A = eB,
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where

eB = E +B +
1

2!
B2 + . . .+

1

n!
Bn + . . .

For any real nonsingular matrix A there is a real matrix B1 that

AB1 = B1A and A2 = eB1 .

If AB = BA, then

eAeB = eBeA = eA+B

If

Y = etB,

then

Ẏ = BY.

In fact, if

Y = etB = E + tB +
1

2!
t2B2 + . . .+

1

n!
tnBn + . . . ,

then

Ẏ = B +
1

1!
tB2 +

1

2!
t2B3 + . . .+

1

n!
tnBn + . . .

= B(E + tB +
1

2!
t2B2 + . . .+

1

n!
tnBn + . . .) = BY

Exercise 3.5. Prove that the function Ψ = etB1 is a fundamental matrix of the system

Ẏ = B1Y

3.2.2 The Liapunov theorem for periodic linear systmes

Theorem 3.8. (Liapunov). Any periodic linear system of ODE’s

ẋ = A(t)x, A(t+ τ) = A(t)

is equivalent to a linear system

ẏ = By

with the constant matrix B. If a periodic matrix A(t) with period τ is a real matrix then there is a
real constant matrix B1 that these two systems are equivalent systems considering them as periodic
systems with the period 2τ .

Proof.
Let a matrix A(t) be a periodic matrix with a period τ , Φ(t) is a fundamental matrix with the

main matrix C:

Φ(t+ τ) = Φ(t)C.

Since C is nonsingular, there exists a matrix B such that C = eτB. The function Ψ(t) = etB is
a fundamental matrix of the system ẋ = Bx. Because the periodic linear systems of equations
ẋ = A(t)x and ẋ = Bx have the same main matric C, they are equivalent.
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If the matrix A(t) is real, then the fundamental matrix Φ(t) is a real matrix, this implies that C
is also a real matrix and

Φ(t+ 2τ) = Φ(t+ τ)C = Φ(t)C2.

For the matrix C2 there is a real matrix B̂1 that

C2 = eB̂1

or if we denote B1 =
1

2τ
B̂1, then C2 = e2τB1 The systems

Ẋ = A(t)X

and
Ẏ = B1Y

are equivalent systems considering them as systems with the period 2τ . This follows from the
property that Ψ(t) = etB1 is a fundamental matrix of the system Ẏ = B1Y and the equalities

Ψ(t+ 2τ) = e(t+2τ)B1 = etB1e2τB1 = Ψ(t)C2, Φ(t+ 2τ) = Φ(t)C2.

From the previous theorem one has that these two systems are equivalent as periodic systems with
the period 2τ . 2

3.3 Linear homogeneous systems with constant coefficients

In this subsection we construct a fundamental system of solutions of a linear system of ODE’s

ẋ = Ax, (3.7)

where A is a real m×m matrix with elements aij ∈ R.
If x = φ(t)+iψ(t) is a complex-valued solution of this system, then φ(t) and ψ(t) are also solutions

of (3.7). This follows from the property

φ̇+ iψ̇ = Aφ+ i(Aψ).

A fundamental system of solutions of system (3.7) depends on algebraic structure of the matrix A.
Let D(λ) = det(A−λE) be a characteristic polynomial and λ1, . . . , λp are eigenvalues of multiplicities
µ1, . . . , µp. Here 1 ≤ p ≤ m and

∑
α

µα = m.

For each eigenvalue λ of multiplicity µ one constructs a chain of adjoint vectors h(1), h(2), . . . , h(µ):

(A− λE)h(1) = 0
(A− λE)h(2) = h(1)

. . . . . .
(A− λE)h(µ) = h(µ−1).

Theorem 3.9. There exists a basis of the vector space Cn, which consists of chains of adjoint
vectors. Even more, for real matrices A, if λ is a real number, then a corresponding chain can be
chosen real and if λ is a complex number, then for λ and the conjugate eigenvalue λ corresponding
chains can be chosen pairwise conjugate.

In order to construct a fundamental system of solutions one defines auxiliary functions for each
chain.
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Let λ be an eigenvalue of multiplicity µ and h(1), h(2), . . . , h(µ) be a chain of adjoint vectors.
Functions Ω1(t),Ω2(t), . . . ,Ωµ(t) defined by:

Ω0(t) = 0, Ωk(t) =
k∑

α=1

tk−α

(k − α)!
h(α).

satisfy the properties:
d

dt
Ωk(t) = Ωk−1(t), (k = 1, 2, . . . , µ),

AΩk = λΩk + Ωk−1, (k = 1, 2, . . . , µ).

Exercise 3.6. Prove these properties.

Lemma 3.3. The vector-function

y(k)(t) = Ωk(t) exp(tλ)

is a solution of system (3.7).

Exercise 3.7. Prove this lemma.
A fundamental system of solutions can be composed by the vector-functions Ωk(t) exp(λt):

Φ(t) = (Re(y(1)), Im(y(1)), . . . , Re(y(µ)), Im(y(µ)), . . . ).

Exercise 3.8. Prove that the Wronskian

W (0) = det(Φ(0)) 6= 0.

3.4 Linear equations of m-th order

The study of the Cauchy problem of any linear equation:

y(m) + a1(t)y
(m−1) + . . .+ am(t)y = b(t), (3.8)

y(t0) = y0, y
′(t0) = y1, . . . , y

(m−1)(t0) = ym−1, t0 ∈ J

with coefficients aj(t) ∈ C(J) and b(t) ∈ C(J) can be reduced to the study of the Cauchy problem
of the linear system of ODE’s

x′ = A(t)x+ b(t), (3.9)

x(t0) = x0, t0 ∈ J.

Where
x1 = y, x2 = ẏ, . . . , xm = y(m−1)

and

A(t) =



0 1 0 ... 0 0
0 0 1 ... 0 0
0 0 0 ... 0 0
. . . . . .
0 0 0 ... 0 1

−am(t) −am−1(t) −am−2(t) ... −a2(t) −a1(t)


, b(t) =



0
0
0
. . .
0
b(t)


. (3.10)
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Note that A(t) ∈ C(J), b(t) ∈ C(J).

Theorem 3.10. The Cauchy problems (3.8) and (3.9) are equivalent.
Proof.
Any solution ψ(t) of (3.8) corresponds to the solution

x(t) = (ψ(t), ψ′(t), . . . , ψ(m−1)(t))∗

of system (3.9), and opposite, any solution of (3.9)

x(t) = (ϕ1(t), ϕ2(t), . . . , ϕm(t))∗

corresponds to the solution
y = ϕ1(t)

of (3.8). 2

From the equivalence property between (3.8) and (3.9) one concludes that there exists one and
only one solution of the Cauchy problem (3.8).

As for a linear system of ODE’s we start studying a homogeneous equation

ym + a1(t)y
(m−1) + . . .+ amy = 0. (3.11)

This equation is equivalent to a homogeneous system

ẋ = A(t)x

with the matrix (3.10).

Definition 3.7. A system of functions

ψ1(t), ψ2(t), . . . , ψk(t), t ∈ J

is called a linearly dependent system of functions if there are constants cα, (α = 1, 2, . . . , k) at least
one of them is not equal to zero, that the linear combination

k∑
α=1

cαψα(t) = 0, ∀t ∈ J.

Otherwise the system of functions is called linearly independent.

Definition 3.8. A linearly independent system of solutions

ψ1(t), ψ2(t), . . . , ψm(t), t ∈ J

of a homogeneous equation
y(m) + a1(t)y

(m−1) + . . .+ am(t)y = 0

is called a fundamental system of solutions (here m is an order of the equation).

Theorem 3.11. A system of solutions ψ1(t), ψ2(t), . . . , ψm(t), t ∈ J of equation

y(m) + a1(t)y
(m−1) + . . .+ am(t)y = 0

is linearly independent (or dependent) if and only if a system of solutions ~ϕ1(t), ~ϕ2(t), . . . , ~ϕm(t), t ∈
J of the linear system

x′ = A(t)x
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is linearly independent (or linearly dependent).

Remark 3.7. Here the matrix A(t) is (3.10), the systems of solutions ψ1(t), ψ2(t), . . . , ψm(t),
t ∈ J and ~ϕ1(t), ~ϕ2(t), . . . , ~ϕm(t), t ∈ J are related by the formula

~ϕj(t) = (ψj(t), ψ̇j(t), . . . , ψ
(m−1)
j (t))∗

Exercise 3.9. Prove this theorem.

Definition 3.9. The determinant of the matrix

W (t) =

∣∣∣∣∣∣∣
ψ1(t) . . . ψm(t)
. . . . . . . . .

ψ
(n−1)
1 (t) . . . ψ(m−1)

m (t)

∣∣∣∣∣∣∣ , t ∈ J,
composed by functions ψ1(t), . . . , ψm(t), t ∈ J is called the Wronskian.

Theorem 3.12. (Ostrogradskii-Liouville). Let W (t), t ∈ J be the Wronskian of a fundamental
system of solutions of a linear equation

y(m) + a1(t)y
(m−1) + . . .+ am(t)y = 0,

then

W (t) = W (t0)e
−
∫ t

t0
a1(τ)dτ

, t ∈ J.

Exercise 3.10. Prove the Ostrogradskii-Liouville formula.

Exercise 3.11. Derive the method of variation of parameters for equation (3.8).

3.5 Second order linear equations

The most intensively studied class of ODE’s is the class of linear second order equations

p0(x)
d2u

dx2
+ p1(x)

du

dx
+ p2(x)u = p3(x). (3.12)

The coefficients pi(x), (j = 0, 1, 2, 3) are assumed continuous functions in the interval J . Dividing
(3.12) by leading coefficient p0(x), one obtains the normal form

d2u

dx2
+ p(x)

du

dx
+ q(x)u = r(x). (3.13)

By substituting the representation

u(x) = v(x)e−
1
2

∫
p(x) dx

into (3.13) it can be reduced to the equation

d2v

dx2
+ q̂(x)v = r̂(x), (3.14)

where q̂(x) = −p
′(x)

2
− p(x)2

4
+ q(x), r̂(x) = r(x)e

1
2

∫
p(x) dx.
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3.5.1 Bases of solutions

Here we consider a second order homogeneous linear equations with constant coefficients

y′′ + py′ + qy = 0.

As it was proved, this equation can be transformed to the equation

y′′ + q̂y = 0.

with q̂ = q−p2/4. Thus, it is enough to construct a fundamental system of solutions for the equation

y′′ + qy = 0. (3.15)

A fundamental system of solutions (f(t), g(t)) of equation (3.15) depends on a value of the constant q:

q > 0 q = 0 q < 0

f(t) sin(t
√
q) 1 e−t

√
−q

g(t) cos(t
√
q) t et

√
−q

3.5.2 Separation theorems

The following theorem states that all nontrivial solutions of a linear homogeneous second order
equation have the same number of zeros.

Theorem 3.13. (Sturm separation). If f(t) and g(t) are linearly independent solutions of the
DE

y′′ + p(t)y′ + q(t)y = 0,

then between two successive zeros of the function g(t) there is zero of the function f(t).
Proof.
Since f(t) and g(t) are linearly independent the Wronskian is either strictly positive or strictly

negative. For the sake of simplicity, assume that W (f, g)(t) > 0. If g(t∗) vanishes at t∗, then

W (f, g)(t∗) = f(t∗)g
′(t∗) > 0.

Therefore, f(t∗) 6= 0 and g′(t∗) 6= 0. If t1 and t2 are two successive zeros of g: g(ti) = 0, (i = 1, 2),
then g′(ti) 6= 0 and f(ti) 6= 0, (i = 1, 2). Moreover, the nonzero numbers g′(ti), (i = 1, 2) have
different signs: g′(t1)g

′(t2) < 0. Hence, f(t1) and f(t2) have opposite signs. Because the function
f(t) is a continuous function, then there exists a point tf where f(tf ) = 0. 2

Theorem 3.14. (Sturm). Let f(t) and g(t) be nontrivial solutions of the DE’s f ′′ + p(t)f = 0,
and g′′ + q(t)g = 0, respectively, where p(t) ≥ q(t). Then f(t) vanishes at least once between any two
zeros of g(t), unless p(t) ≡ q(t) and f(t), g(t) are linearly dependent.

Proof.
Let t1 and t2 (t2 > t1) be two successive zeros of g(t), so that g(ti) = 0, (i = 1, 2) and g(t) 6=

0, ∀t ∈ (t1, t2), for example, assume that g(t) > 0, ∀t ∈ (t1, t2). Then g′(t1) ≥ 0, g′(t2) ≤ 0. Suppose
that f(t) 6= 0, ∀t ∈ (t1, t2), for the sake of simplicity one can account that f(t) > 0, ∀t ∈ (t1, t2).
This makes

W (f, g)(t1) = f(t1)g
′(t1) ≥ 0, W (f, g)(t2) = f(t2)g

′(t2) ≤ 0.

On the other hand, since f(t) > 0, g(t) > 0 and p(t) ≥ q(t), ∀t ∈ (t1, t2), one has

d

dt
(W (f, g)(t)) = f(t)g′′(t)− f ′′(t)g(t) = (p(t)− q(t))f(t)g(t) ≥ 0, ∀t ∈ (t1, t2).
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Hence, W (f, g)(t) is nondecreasing. It gives a contradiction unless

(p(t)− q(t))f(t)g(t) ≡ W (f, g)(t)) ≡ 0.

In this event, f(t) ≡ kg(t) for some constant k. 2

Corollary 3.1. If q(t) ≤ 0, then there is no nontrivial solution of ODE

u′′ + q(t)u = 0 (3.16)

that can have more than one zero.
Proof.
We can compare solutions of two equations: (3.16) and v′′ = 0. If nontrivial solution g(t) of

equation (3.16) has two zeros, then the solution f(t) = 1 of the equation v′′ = 0 must have zero
between two successive zeros of g(t). This is a contradiction. 2

3.5.3 Adjoint operators

Definition 3.10. Any second–order homogeneous linear ODE

L[u] = p0(t)u
′′(t) + p1(t)u

′(t) + p2(t)u(t) = 0 (3.17)

is said to be exact if and only if, for some A(t), B(t) ∈ C1(J),

p0u
′′ + p1u

′ + p2u =
d

dt
(Au′ +Bu)

for all functions u ∈ C2(J).
An integrating factor for DE (3.17) is a function v(t) such that vL[u] is exact1.
If an integrating factor v for (3.17) can be found, then

v(t)(p0(t)u
′′ + p1(t)u

′ + p2(t)u) =
d

dt
(A(t)u′ +B(t)u).

Thus, the solutions of the homogeneous DE (3.17) are those of the first–order nonhomogeneous linear
DE

A(t)u′ +B(t)u = C,

where C is an arbitrary constant. Also, the solutions of the nonhomogeneous DE L[u] = r(t) are
those of the first-order DE

A(t)u′ +B(t)u =
∫

v(t)r(t)dt+ C

These DEs can be solved by a quadrature. Hence, if an integrating factor of (3.17) can be found,
one can reduce the equation L[u] = r(t) to a sequence of quadratures.

Evidently, L[u] = 0 is exact in (3.17) if and only if p0 = A, p1 = A′ + B and p2 = B′. Hence
(3.17) is exact if and only if

p2 = B′ = (p1 − A′)′ = p′1 − (p′0)
′.

This simple calculation proves the following result.

Lemma 3.4. Differential equation (3.17) is exact if and only if its coefficient functions satisfy

p′′0 − p′1 + p2 = 0.

1Here and later, it will be assumed that p0 ∈ C2(J) and p1, p2 ∈ C1(J).
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Corollary 3.2. A function v ∈ C2(J) is an integrating factor for DE (3.17) if and only if it is
a solution of the second–order homogeneous linear DE

M [v] = (p0(t)v(t))
′′ − (p1(t)v(t))

′ + p2(t)v(t) = 0. (3.18)

Definition 3.11. An operator M in (3.18)

M [v] = p0v
′′ + (2p′0 − p1)v

′ + (p′′0 − p′1 + p2)v = 0

is called an adjoint to the linear operator L.

Whenever a nontrivial solution of the adjoint DE (3.18) of a given second–order linear DE (3.17)
can be found, every solution of any DE L[u] = r(t) can be obtained by quadratures.

Substituting into (3.18), one finds that an adjoint operatator of the adjoint of a given second–
order linear DE is again the original DE. Another consequence of (3.18) is the identity, valid whenever
p0 ∈ C2(J), pi ∈ C1(J), i = 0, 1,

vL[u]− uM [v] = (vp0)u
′′ − u(p0v)

′′ + (vp1)u
′ + u(p1v)

′.

Since wu′′ − uw′ = (wu′ − uw′)′ and (uw)′ = uw′ + wu′, this can be simplified to give the Lagrange
identity

vL[u]− uM [v] =
d

dt
(p0(u

′v − uv′)− (p′0 − p1)uv) (3.19)

The left side of (3.19) is an exact differential of a homogeneous bilinear expression in u, v, and their
derivatives.

Definition 3.12. A homogeneous linear differential equation that coincides with its adjoint is
called a self-adjoint.

The condition for (3.17) to be self–adjoint is 2p′0 − p1 = p1, that is p′0 = p1. Since this relation
implies p′′0 = p′1, it is also sufficient. Moreover, in this self–adjoint case, the last term in the Lagrange
identity (3.19) vanishes. This proves the first statement of the following theorem.

Theorem 3.15. A second–order linear DE (3.17) is self–adjoint if and only if it has the form

d

dt
(p(t)

du

dt
) + q(t)u = 0.

Differential equation (3.17) can be made self–adjoint by multiplying through by

h(t) =
1

p0(t)
e
∫

(
p1
p0

)dt
.

Proof.

To prove the second statement, first reduce (3.17) to normal form by dividing through by p0, and
then observe that the DE

hu′′ + (ph)u′ + (qh)u = 0

is self–adjoint if and only if h′ = ph or h = e
∫
pdt. 2
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3.5.4 Two–endpoints problem

We have considered only ”initial conditions”. That is, in considering solutions of second–order DEs
such as y′′ = p(t)y′ + q(t)y, we have supposed y and y′ both given at the same point t0. That is
natural in many dynamical problems.

In other problems, two–endpoint conditions, at points t = a and t = b, are more natural. For
instance, the DE y′′ = 0 characterizes straight lines in the plane, and one may be interested in
determining the straight line joining two given points (a, y1) and (b, y2). That is, the problem is to
find the solution y = f(t) of the DE y′′ = 0 which satisfies the two–endpoint conditions f(a) = y1

and f(b) = y2.
It is natural to ask: under what circumstances does a second-order DE has an unique solution,

assuming given values f(a) = y1 and f(b) = y2 at two given endpoints a and b > a? When this is
so, the resulting two–endpoint problem is called well-set.

Theorem 3.16. A two–endpoint problem of a second–order linear homogeneous DE

y′′ + p(t)y′ + q(t)y = 0,
y(a) = y1, y(b) = y2

(3.20)

with continuous coefficients in the interval J = [a, b] has unique solution if and only if the two–
endpoint problem

y′′ + p(t)y′ + q(t)y = 0,
y(a) = 0, y(b) = 0

has an unique solution.
Proof. The general solution of the differential equation y′′ + p(t)y′ + q(t)y = 0 is the function

y = αf(t) + βg(t), where f(t) and g(t) are two linear independent solutions, and α, β are arbitrary
constants. We are looking for the solution that satisfies the conditions

αf(a) + βg(a) = y1, αf(b) + βg(b) = y2.

Considering this equations as a system of linear algebraic equations with respect to α and β one has
that this system has an unique solution α and β if and only if the determinant f(a)g(b)−g(a)f(b) 6= 0.
This condition coincides with the condition of uniqueness of the solution of the homogeneous linear
equations

αf(a) + βg(a) = 0, αf(b) + βg(b) = 0.

This proves the theorem. 2

When differential equation (3.20) has a nontrivial solution satisfying the homogeneous end–point
conditions y(a) = y(b) = 0, the point (b, 0) on the x–axis is called a conjugate point of the point
(a, 0) for a given homogeneous linear differential equation (3.20). In general, such conjugate points
exist for differential equations whose solutions oscillate, but not for those of nonoscillatory type, such
as y′′ = q(t)y with q(t) > 0.



Chapter 4

Stability theory

4.1 Stability definitions

We will consider the normal systems of first–order DE’s

ẋ = F (t, x).

with F (t, x) ∈ C(Dh), where Dh is the cylinder

Dh = {(t, x) | t > a, |x| < h}.

The constants a and h can accept infinite values: a = −∞, h = +∞.
If F (t, x) ∈ C(Dh) and Fxj

(t, x) ∈ C(Dh) (j = 1, 2, . . . ,m), then for any (t0, x0) ∈ Dh there exists
only one solution of the Cauchy problem {

ẋ = F (t, x)
x(t0) = x0

(4.1)

The solution of the Cauchy problem (4.1) will be denoted by x = ϕ(t, t0, x0). If it is understandable,
then for the solution x = ϕ(t, t0, x0) we will write x = ϕ(t). Assuming that F (t, 0) = 0 and x0 = 0,
we have only solution x = 0 of the Cauchy problem (4.1), which is called a trivial solution.

Let us consider some solution x = ϕ(t) of the system ẋ = F (t, x) on the interval (a,+∞). We
can construct the equivalent system of equations ẏ = F̂ (t, y) for which the trivial solution y = 0 is
equivalent to the solition x = ϕ(t). This can be done by replacing the unknown function x = y+ϕ(t)
and setting F̂ (t, y) = F (t, y + ϕ(t))− F (t, ϕ(t)). The system ẏ = F̂ (t, y) is called a reduced system.

Exercise 4.1. Prove that the systems ẋ = F (t, x) and ẏ = F̂ (t, y) are equivalent.
Hint: prove that any solution of the system ẋ = F (t, x) corresponds to a solution of the system

ẏ = F̂ (t, y) and vice versa.

Definition 4.1. (Lyapunov stability). The trivial solution of the system ẋ = F (t, x) is called a
stable solution for t→∞ if ∀t0 ∈ (a,∞) and ∀ε > 0, ∃ δ(t0, ε) > 0 that any solution x = ϕ(t, t0, x0)
of the Cauchy problem (4.1) with |x0| < δ satisfies the condition |ϕ(t, t0, x0)| < ε, ∀t ≥ t0.

For an arbitrary nontrivial solution x = ϕ∗(t) the following definition of stability can be given.

Definition 4.2. A solution x = ϕ∗(t), t ∈ (a,∞) of the system ẋ = F (t, x) is called a stable
solution if ∀t0 ∈ (a,∞) and ∀ε > 0 ∃ δ(t0, ε) > 0 that any solution x = ϕ(t, t0, x0) of the Cauchy
problem (4.1) with |x0 − ϕ∗(t0)| < δ satisfies the condition |ϕ(t, t0, x0)− ϕ∗(t)| < ε, ∀t ≥ t0.

Solution that is not stable is called unstable.

65
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Thus, the stability of the solution x = ϕ∗(t0) means that for any point t0 there is a neighborhood
of the point ϕ∗(t0) such that any solution with initial values from this neighborhood will be close to
the solution x = ϕ∗(t), ∀t > t0. And the solution x = ϕ∗(t) is unstable if

∃t0 ∈ (a,∞),∃ε > 0, ∀δ > 0 ∃x0, |x0 − ϕ∗(t0)| < δ, ∃t ≥ t0 ⇒ |ϕ(t, t0, x0)− ϕ∗(t)| ≥ ε

Definition 4.3. (uniform stability). A stable solution x = ϕ∗(t) is called uniformly stable if
δ(t0, ε) does not depend on t0:

∀ε > 0 ∃δ = δ(ε) > 0, ∀x0, |x0 − ϕ∗(t0)| < δ ⇒ |ϕ(t, t0, x0)− ϕ∗(t)| < ε, ∀t > t0.

Exercise 4.2. Show that the trivial solution x = 0 of the equation

ẋ+ x = 0

is stable. Is it a uniformly stable solution?

Definition 4.4. (asymptotic stability). A stable solution x = ϕ∗(t) is called an asymptoticly
stable solution if it possesses the property that ∀t0 ∈ (a,∞) ∃ 4(t0) that any solution x = ϕ(t, t0, x0)
for which |x0 − ϕ∗(t0)| < 4(t0) satisfies the equality

lim
t→∞

|ϕ(t)− ϕ∗(t)| = 0.

Note that, in order for a solution to be asymptoticly stable (though not sufficient) condition is
to be isolated, i.e. that there is a neighborhood of the solution that does not contain any other
asymptoticly stable solutions. This is in contrast to the property of stability, which can apply even
to the solutions that are not isolated.

Definition 4.5. (uniformly asymptotic stability). An asymptoticly stable solution x = ϕ∗(t) is
called an uniformly asymptoticly stable solution if there exists 4 = 4(t0), which does not depend on
t0. The set

{(t, x) ∈ Rm+1| t ∈ (a,∞), |x− ϕ∗(t)| < 4}

is called an attractive domain of the solution x = ϕ∗(t), t ∈ (a,∞)

Exercise 4.3. Show that for the equation

ẋ = 0

any solution is uniformly stable, but not asymptotically stable.
Stability of the solution x = ϕ∗(t) of the system ẋ = F (t, x) is equivalent to stability of the trivial

solution of the reduced system
ẏ = F̂ (t, y),

where y = x− ϕ∗(t) and F̂ (t, y) = F (t, y + ϕ∗(t))− F (t, ϕ∗(t)). Later we will consider systems with
the trivial solution.

Remark 4.1. A system
ẋ = F (t, x)

is periodic with a period τ if F (t + τ, x) = F (t, x), ∀t ≥ a, ∀x ∈ D. If the system is autonomous
(F = F (x)), then it can be thought as a periodic system with an arbitrary period. Hence all the
results presented for periodic systems are applied to autonomous systems.
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For a periodic system the condition of uniform stability (or uniformly asymptotic stability) is
equivalent to stability (asymptotic stability). We leave this remark without proof.

Theorem 4.1. The trivial solution x = 0 of a system ẋ = F (t, x) is stable if and only if,
∀t0 > a, ∃d(t0) and a continuous, strictly increasing function φ : R+ → R+ such that φ(0) = 0 and
∀x0, |x0| < d(t0) the solution x = ϕ(t, t0, x0) of the Cauchy problem (4.1) satisfies the condition

|ϕ(t, t0, x0)| ≤ φ(|x0|) ∀t ≥ t0. (4.2)

Proof.
If (4.2) holds, then for any given ε > 0 and any t0 ≥ a by choosing

δ(ε, t0) =

{
d(t0), ε > d(t0)
φ−1(ε), ε ≤ d(t0)

we get that the trivial solution is stable.
To prove the converse, we fix t0 and construct a function φ ∈ C([0, d(t0)]) by the following way.
Because the trivial solution is stable, then for any given ε > 0 there exists δ(t0, ε) such that

∀x0, |x0| < δ(t0, ε) the solution x = ϕ(t, t0, x0) satisfies the inequality |ϕ(t, t0, x0)| < ε. The function
ψt0(ε) = sup(δ(t0, ε)) is nondecreasing and satisfies the conditions ψt0(0) = 0 and ψt0(ε) > 0, ∀ε > 0.
Let |x0| < ψt0(ε) with (ε < h), then there is δ(t0, ε), such that |x0| < δ(t0, ε) ≤ ψt0(ε), which implies
|ϕ(t, t0, x0)| < ε. Since the solution ϕ(t, t0, x0) is continuous with respect to x0, the inequality
|x0| ≤ ψt0(ε) implies |ϕ(t, t0, x0)| ≤ ε.

For any nondecreasing positive function there exists a continuous strictly increasing function θ(ε)
such that 0 ≤ θ(ε) ≤ ψt0(ε), ∀ε ≥ 0. Let us define d(t0) = θ(h). The function θ(ε) has the inverse
function φ(s) = θ−1(s), which is continuous, strictly increasing and defined in the interval [0, d(t0)].

Assume that |x0| ≤ d(t0) and define ε = φ(|x0|). Because |x0| = θ(ε) ≤ ψt0(ε), one obtains (4.2).
2

Remark 4.2. As an example of the function θ(ε) one can take the function

θ(ε) =
∫ ε

0
ψt0(s) ds.

Remark 4.3. Note that the function φ depends on the point t0.
The same theorem takes place for uniform stability.

Theorem 4.2. The trivial solution x = 0 of a system ẋ = F (t, x) is uniformly stable if and only
if there exists d > 0 and a continuous strictly increasing function φ : R+ → R+ such that φ(0) = 0
and ∀x0, |x0| < d the solution x = ϕ(t, t0, x0) of the Cauchy problem (4.1) satisfies the condition

|ϕ(t, t0, x0)| ≤ φ(|x0|) ∀t ≥ t0.

Exercise 4.4. Prove the theorem.

Definition 4.6. The function V (t, x) is called a positive definite in the cylinder

Dh = {(t, x) | t > a, |x| ≤ h},

if there exists a positive function W (x) > 0, ∀x 6= 0 such that

V (t, x) ≥ W (x), ∀(t, x) ∈ Dh.
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A function V (t, x) is called a negative definite function in Dh if −V (t, x) is positive definite.
For a given function V (t, x) ∈ C1(Dh) and a system ẋ = F (t, x) we relate the function

V̇ (t, x) =
∂V

∂t
(t, x) +

∑
α

Fα(t, x)
∂V

∂xα
(t, x) =

∂V

∂t
(t, x) +∇xV (x) · F (t, x),

where F = (F1, F2, . . . , Fm)∗.
The main property of V̇ (t, x) is the following. Let x = ϕ(t) be a solution of the system ẋ = F (t, x)

and v(t) = V (t, ϕ(t)). Then

dv(t)

dt
=

∂V

∂t
(t, ϕ(t)) +

∑
α

∂V

∂xα
(t, ϕ(t))

dϕα
dt

(t)

=
∂V

∂t
(t, ϕ(t)) +

∑
α

∂V

∂xα
Fα(t, ϕ(t))

= V̇ (t, ϕ(t))

For this reason the function V̇ (t, x) is called a derivative of V (t, x) along the trajectories of the system
ẋ = F (t, x).

Example 4.1. Let F (t, x) = Ax with a constant matrix A and V (t, x) = x · x = x2. For this
function

V̇ (t, x) = 0 +
∑
α

∂V

∂xα
Fα = 2

∑
α

xαFα = 2x · F = 2x · Ax.

4.2 Stability and instability theorems

4.2.1 The Lyapunov theorems

Theorem 4.3. (Lyapunov). If there is a positive definite function V (t, x) ∈ C1(Dh) with a contin-
uous function W (x) and V (t, 0) = 0 such that V̇ (t, x) ≤ 0, ∀(t, x) ∈ Dh, for a system

ẋ = F (t, x),

then the trivial solution x = 0 of this system is stable.

Remark 4.4. The function V (t, x) is called a Lyapunov function.
Proof.
One has to prove that any solution x = ϕ(t) of the system ẋ = F (t, x) possesses the property:

∀ε > 0, ∀t0 ∈ (a,∞) ∃ δ = δ(t0, ε) > 0, ∀|ϕ(t0)| < δ =⇒ |ϕ(t)| < ε, ∀t ∈ (t0,∞).

Choose an arbitrary t0 ∈ (a,∞) and ε > 0. Without loss of generality one can suppose that
ε < h. Because W (x) is a positive continuous function, then there is the positive number

α = min
|x|=ε

W (x) > 0.

By virtue of continuity of the function V (t, x) at the point (t0, 0), there exists δ > 0 that if |x| < δ,
then V (t0, x) < α. It is also assumed that δ < ε.

Now we will show that if x = ϕ(t, t0, x0) is any solution of the Cauchy problem (4.1) and if
|x0| < δ, then |ϕ(t, t0, x0)| < ε, ∀t > t0.
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Assume that there is t1 such that |ϕ(t1, t0, x0)| = ε and t1 is the nearest point to t0 with this
property. The function v(t) = V (t, ϕ(t)) ≥ W (ϕ(t)) is not negative and satisfies the inequality

v(t1)− v(t0) =
∫ t1

t0
V̇ (τ, ϕ(τ))dτ ≤ 0.

This means that
v(t0) ≥ v(t1).

Note that v(t1) > 0, because of ϕ(t1) 6= 0. But from another side, because |ϕ(t0)| < δ, then

v(t0) = V (t0, ϕ(t0)) < α,

This gives
v(t1) = V (t1, ϕ(t1)) ≥ W (ϕ(t1)) ≥ min

|x|=ε
W (x) = α > v(t0).

This contradicts to the assumption. 2

Exercise 4.5. Prove that the trivial solution of the equation

ẋ = ax, a ≤ 0

is stable. Use the Lyapunov function V (t, x) = x2.

Definition 4.7. A function V (t, x) is said to be a decrescent if there exists a constant h > 0
and a continuous strictly increasing function W (s), s ∈ [0, h] such that

i) W (0) = 0,
ii) V (t, x) ≤ W (|x|), ∀t ∈ (a,∞), ∀x ∈ Bh, where Bh = {x ∈ Rn| |x| < h}.

Theorem 4.4. (Lyapunov, asymptotic stability). The equilibrium x = 0 of the system ẋ = F (t, x)
is asymptotically stable if there exists a decrescent, positive definite function V (t, x) ∈ C1(Dh) such
that

V (t, x) ≥ W (x),∀t ∈ (a,∞),∀x ∈ Bh,

V (t, x) ≤ W2(|x|), ∀t ∈ (a,∞), ∀x ∈ Bh.

and V̇ (t, x) is a negative definite function:

V̇ (t, x) ≤ −W1(x) < 0, ∀x 6= 0.

Here W2(s) ∈ C([0, h]) is a monotonously increasing function, W (x) ∈ C(Bh), W1(x) ∈ C(Bh), and

V (t, 0) = 0, W2(0) = 0.

Proof.
Since

V̇ (t, x) ≤ −W1(x) < 0, ∀x 6= 0,

by virtue of the first Lyapunov theorem the trivial solution is stable. Hence, taking ε = h, there exists
δ(t0, h) > 0 such that ∀x0, |x0|, δ one has |ϕ(t, t0, x0)| < h. Set ∆(t0) = δ(t0, h). Let |x0| < ∆(t0)
and assume that x = ϕ(t, t0, x0) is the solution of the Cauchy problem{

ẋ = F (t, x),
x(t0) = x0,
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where |x0| < ∆(t0), t0 > a. First of all we study the function

v(t) = V (t, ϕ(t, t0, x0)).

If v(t0) = 0, then
0 = V (t0, ϕ(t0)) ≥ W (ϕ(t0)) = W (x0) ≥ 0.

Therefore W (x0) = 0, but it can be only if x0 = 0. In this case ϕ(t, t0, x0) = 0, ∀t ≥ t0 (by virtue
of uniqueness of a solution of the Cauchy problem).

Let v(t0) 6= 0. Because ϕ(t, t0, x0) ∈ Bh and

v̇(t) = V̇ (t, ϕ(t, t0, x0)) ≤ −W1(ϕ(t, t0, x0)) < 0,

the function v(t) is a monotonously decreasing function. Therefore there is a limit of v(t):

α = lim
t→∞

v(t) ≥ 0.

We will show that α = 0.
Assume that α > 0, then the solution x = ϕ(t, t0, x0) has the property:

∃ β > 0 =⇒ |ϕ(t)| ≥ β, ∀t > t0.

In fact, suppose opposite: ∀ β > 0, ∃ t > t0 that |ϕ(t)| < β. Choosing βk = 1/k, one has the
sequence (tk, ϕ(tk)) in which ϕ(tk) → 0. If {tk} is bounded, then there is a subsequence

{tkn} −→n→∞ t̂0 <∞.

Because of the continuity of the function ϕ(t)

ϕ(t̂0) = lim
n→∞

ϕ(tkn) = 0.

By virtue of the uniqueness of a solution of the Cauchy problem (4.1) one obtains that ϕ(t, t0, x0) = 0
, ∀t > t0. This gives a contradiction to v(t0) 6= 0. Therefore there exists subsequence tkn →∞.

Because the function V (t, x) is decrescent, then there exists a function W2(x) such that W2(0) = 0
and

V (t, x) ≤ W2(|x|), ∀t ∈ (a,∞), ∀x ∈ Bh.

Because ϕ(t, t0, x0) ∈ Bh and ϕ(tkn , t0, x0) → 0, then

0 ≤ v(tkn) = V (tkn , ϕ(tkn , t0, x0)) ≤ W2(|ϕ(tkn)|) → 0.

It contradicts to the condition that α > 0. Thus,

∃ β > 0 =⇒ |ϕ(t)| ≥ β, ∀t > t0.

Let us consider the ring
G = {x| β ≤ x ≤ h}.

Because the function W1(x) is continuous and positive, then there is a strictly positive constant
γ = min

x∈G
W1(x) > 0. This implies

v(t)− v(t0) ≤
∫ t

t0
W1(ϕ(s, t0, x0)) ds ≤ −γ(t− t0).
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It contradicts to the condition that v(t) ≥ 0. Therefore α = 0.
By virtue of the inequality

v(t) = V (t, ϕ(t, t0, x0)) ≥ W (ϕ(t, t0, x0)) > 0

one obtains
lim
t→∞

W (ϕ(t, t0, x0)) = 0.

It means that
lim
t→∞

ϕ(t, t0, x0) = 0.

2

Exercise 4.6. Prove that lim
t→∞

ϕ(t, t0, x0) = 0.

Remark 4.5. Note that the condition of the function V (t, x) to be decrescent can not be omitted
in the second Lyapunov theorem. In order to show this let us consider the Massera’s example. We
construct a differential equation, which satisfies all conditions of the second Lyapunov theorem except
the condition for the function V (t, x) to be decrescent.

Let us construct the following function g(t):
(a) at integer t = n, g2(n) = 1, ∀n,
(b) in the intervals

[
(n− 1) + 1

2

(
1

n−1

)(n−1)
, n− 1

2

(
1
n

)n]
the function

g2(t) = e−t, t ∈
[
(n− 1) +

1

2

(
1

n− 1

)(n−1)

, n− 1

2

(
1

n

)n]
,

(c) on the interval (n− 1

2
(
1

n
)n, n+

1

2
(
1

n
)n) the function g2(t) is joined with the function e−t and

1 by continuously differentiable way.
The function g(t) is continuously differentiable on (0,∞).
For the equation

ẋ =
g′(t)

g(t)
x (4.3)

the Lyapunov function

V (t, x) =
x2

g2(t)
(3−

∫ t

0
g2(s)ds )

satisfies all conditions of the second Lyapunov theorem except the condition for the function V (t, x)
to be decrescent. Note that V̇ (t, x) = −x2. Because any solution of equation (4.3) has representation
x = c g(t), t ∈ (0,∞), then the trivial solution is stable, but it is not asymptoticly stable.

4.2.2 The Chetaev theorem

Theorem 4.5. (Chetaev). The equilibrium x = 0 of a system ẋ = F (t, x) is unstable if there exists
a function V (t, x) with the properties:

(a) V ∈ C1(Dh),
(b) V is bounded on the Π = {(t, x) ∈ Dh| V (t, x) > 0},
(c) V̇ (t, x) > 0 in Π,
(d) ∀α > 0, ∃β(α) > 0, that V̇ (t, x) ≥ β on Πα, where Πα = {(t, x) ∈ Dh| V (t, x) ≥ α},
(e) ∃t0 such that 0 ∈ D̄t0 , where Dt0 = {x ∈ Rn| (t0, x) ∈ Π}.
Proof.
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In order to prove the theorem one needs to find t̂0 and ε > 0 such that

∀δ > 0 ∃x0, |x0| < δ, ∃t1 > t̂0 =⇒ |ϕ(t1)| ≥ ε.

Let ε = h (the radius of the cylinder Dh), t̂0 = t0 (from property (e)). Because 0 ∈ D̄t0 , then
for any δ > 0 ∃ x0 ∈ Dt0 and |x0| < δ. Let us consider the solution x = ϕ(t, t0, x0) of the Cauchy
problem (4.1). Note that

v(t0) = V (t0, x0) > 0.

Assume that |ϕ(t, t0, x0)| < ε, ∀t > t0. It will be proven that this contradicts to the conditions
of the theorem.

Let the set
S = {t > t0 | v(t) = 0} 6= ∅.

Denote t∗ the nearest point to t0: t∗ = inf S. Note that v(t∗) = 0 and v(t) = V (t, ϕ(t, t0, x0)) > 0 in
the interval [t0, t∗). Thus, (t, ϕ(t, t0, x0)) ∈ Π and v̇(t) = V̇ (t, ϕ(t, t0, x0)) > 0 (according to the third
property of the theorem). It implies v(t) > v(t0), ∀t > t0. For example, for t = t∗: v(t∗) > v(t0) > 0,
which contradicts to the condition v(t∗) = 0. Therefore, the set S is empty, (t, ϕ(t, t0, x0)) ∈ Π and
v(t) > v(t0), ∀t > t0.

Let α = v(t0) > 0. Note that

v(t) > v(t0) = α, ∀t > t0.

Since ϕ(t, t0, x0)) ∈ Dh and v(t) > 0, one has (t, ϕ(t)) ∈ Πα. Using property (d) there is β = β(α) > 0
that V̇ (t, ϕ(t, t0, x0)) ≥ β and then

v(t) = v(t0) +
∫ t

t0
v̇(s) ds ≥ v(t0) + β(t− t0).

This contradicts to the boundness of V (t, x). 2

Exercise 4.7. Using the Chetaev theorem (taking V (t, x) = x2) prove that the solution x = 0
of the equation

ẋ = ax, a > 0

is not stable.

4.3 Stability of quasilinear systems

Definition 4.8. A system of ODE’s ẋ = F (t, x) is called a quasilinear system if

F (t, x) = A(t)x+ ϕ(t, x),

where A(t) is m×m matrix and the function ϕ(t, x) satisfies the conditions:
(a) ϕ(t, 0) = 0,

(b) lim
|x|→0

|ϕ(t, x)|
|x|

= 0 uniformly with respect to t.

Let the matrix A be a constant matrix.

Theorem 4.6. If all eigenvalues of the constant matrix A have strictly negative real parts, then
the trivial solution of the quasilinear system ẋ = F (t, x) is asymptoticly stable.

Proof.
We prove the theorem by applying the second Lyapunov theorem.
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Let us consider the linear homogeneous system

ẏ = Ay.

Assume that Φ(t) is a fundamental matrix of the system. By virtue of the construction of a funda-
mental matrix, every element of the fundamental matrix Φ(t) has the resprsentation

P (t) · eλt

where P (t) is a polynomial of the degree less than multiplicity of the eigenvalue λ of the matrix A.
Because Re(λ) < 0, then the integral ∫ ∞

0
Φ∗(τ)Φ(τ) dτ

converges. Since fundamental matrices are related by Φ̂(t) = Φ(t)C with some constant matrix C,
without loss of generality, we can account that Φ(t) is a matrizant: a fundamental matrix with the
identical matrix Φ(0).

Choose

V (t, x) ≡ V (x) =
∫ ∞

0
(Φ(τ)x,Φ(τ)x)dτ =

∫ ∞

0
(Φ∗(τ)Φ(τ)x, x)dτ =

((∫ ∞

0
Φ∗(τ)Φ(τ)dτ

)
x, x

)
or

V (t, x) = (Sx, x),

where
S =

∫ ∞

0
Φ∗(τ)Φ(τ)dτ

is a numerical matrix. Since the matrix Φ(t) is nonsingular and continuous the scalar product
(Sx, x) ≥ 0, and (Sx, x) = 0 if only if x = 0.

The matrix S is equivalent to the diagonal matrix Λ with positive diagonal elements λi (i =
1, 2, . . . ,m). Even more, because S is a symmetric matrix, there is an orthogonal matrix P and a
diagonal matrix Λ such that

S = P ∗ΛP.

Let us consider a scalar product:

(Sx, x) = (P ∗ΛPx, x) = (ΛPx, Px) = (Λy, y) =
m∑
α=1

λαy
2
α ≥ 0,

where the vector y = Px. Because the equality (Sx, x) = 0 is only possible if x = 0, then λi > 0.
Even more (

max
i

(λi)
)
x2 ≥ (Sx, x) ≥

(
min
i

(λi)
)
x2 > 0, ∀x 6= 0.

This means that the function V (t, x) is a decrescent, positive definite function. Note also that
∇V (x) = 2Sx.

The solution ξ(t, x) = Φ(t)x of the Cauchy problem{
ẏ = Ay,
y(0) = x

has the property
ξ(τ, ξ(t, x)) = ξ(t+ τ, x).
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In fact, let a(τ) = ξ(τ, ξ(t, x)) and b(τ) = ξ(t+ τ, x). Then

a(0) = ξ(0, ξ(t, x)) = ξ(t, x), b(0) = ξ(t, x)

and
d

dτ
a = Aa,

d

dτ
b = Ab.

By virtue of the uniqueness of a solution of the Cauchy problem one obtains a(τ) = b(τ).
In order to use the second Lyapunov theorem one needs to show that the function

V̇ (t, x) = (∇V (x), Ax+ ϕ(t, x)) = (∇V (x), Ax) + (∇V (x), ϕ(t, x)).

is negative definite.
For the first term one has

(∇V (x), Ax) =

(
∇V (ξ(t, x)),

dξ

dt

)
t=0

=

(
d

dt
(V (ξ(t, x)))

)
t=0

.

But
V (ξ(t, x)) =

∫ ∞

0
(Φ(τ)ξ(t, x))2dτ =

∫ ∞

0
(ξ(t+ τ, x))2dτ =

∫ ∞

t
(ξ(τ, x))2dτ,

therefore
d

dt
(V (ξ(t, x))) = −(ξ(t, x))2

or
(∇V (x), Ax) = −x2.

The second term (∇V (x), ϕ(t, x)) satisfies the inequality:

|(∇V (x), ϕ(t, x))| ≤ |∇V ||ϕ(t, x)| ≤ 2 ‖ S ‖ |x| |ϕ(t, x)|.

Because lim
|x|→0

|ϕ(t, x)|
|x|

= 0 uniformly with respect to t, then

∀ε > 0 ∃ δ > 0, ∀x, |x| < δ =⇒ |ϕ(t, x)| < ε|x|.

If ε satisfies the inequality
α = 1− 2 ‖ S ‖ ε > 0,

then in the cylinder
Dδ = {(t, x)| t > a, |x| ≤ δ}

the function V̇ (t, x) is negative definite:

V̇ (t, x) = −x2 + 2(Sx, ϕ(t, x)) < −x2 + (2 ‖ S ‖ ε)x2 < −αx2.

By virtue of the second Lyapunov theorem the trivial solution is asymptotically stable. 2

Corollary 4.1. If all eigenvalues of the Jacobi matrix

A =
∂F (x)

∂x |x=0

are strictly negative, then the trivial solution of an autonomous system

ẋ = F (x), F ∈ C2
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is asymptoticly stable.
Proof.
Because F ∈ C2, then from the Taylor formula

F (x) = Ax+ ϕ(x)

with some function ϕ(x) ∈ C1, which satisfies

lim
x→0

|ϕ(x)|
|x|

= 0.

The proof of the corollary follows from the previous theorem. 2

Theorem 4.7. The trivial solution of a linear system

ẋ = Ax

with a constant matrix A is unstable if at least one of eigenvalues has strictly positive real part.

Exercise 4.8. Prove this theorem.
Hint: find a solution, which corresponds to an eigenvalue with a positive real part.

Definition 4.9. A critical point x0 (F (t, x0) = 0) is called totally unstable, if ∀t0 there exists
δ > 0 such that

∀ξ, |ξ − x0| < δ, ∃ T = T (t0, ξ) that ∀t > T =⇒ |ϕ(t, t0, ξ)− x0| ≥ δ

where x = ϕ(t, t0, ξ) is a solution of the Cauchy problem

ẋ = F (t, x), x(t0) = ξ.

Theorem 4.8. Let a quasilinear system

ẋ = F (t, x) = Ax+ ϕ(t, x)

has a constant matrix A. If all eigenvalues of the matrix A have a strictly positive real part, then
the trivial solution x = 0 of this system is totally unstable.

Proof.
Take the system

ẋ = −Ax.
With the help of a fundamental matrix of this system one can construct the Lyapunov function

V (x) = (Sx, x).

This function has the properties (the proof is the same as in the previous theorem):
(a) (∇V,−Ax) = (2Sx,−Ax) = −x2,
(b) α2x

2 ≤ V (x) ≤ α1x
2, α1 > 0, α2 > 0, where α1 = max(λk), α2 = min(λk).

For the function V̇ (x) one has

V̇ (x) = (∇V,Ax+ ϕ(t, x)) = (∇V,Ax) + (∇V, ϕ(t, x)) = x2 + 2(Sx, ϕ(t, x)).

Because the system ẋ = F (t, x) is a quasilinear system, then

∀ε > 0, ∃ δ1 > 0, ∀x, |x| < δ1 =⇒ |ϕ(x, t)| < ε|x|.
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Therefore, if |x| < δ1, then
|(∇V, ϕ(t, x))| ≤ 2 ‖ S ‖ εx2

or
−(2 ‖ S ‖ ε)x2 ≤ (∇V, ϕ(t, x)) ≤ (2ε ‖ S ‖)x2.

Suppose that ε satisfies the inequality

α = 1− 2ε ‖ S ‖> 0,

then
V̇ (x) ≥ αx2 =

α

α1

α1x
2 ≥ βV (x),

where β = α/α1 > 0.
There exists a number c ≤ ε, such that ∀x satisfying the inequality V (x) ≤ c, then |x| ≤ δ1. In

fact, assume opposite, that

∀c ≤ ε, ∃x, such that if V (x) ≤ c =⇒ |x| > δ1.

Let cn = 1/n, then there is a sequence {xn} that

V (xn) ≤
1

n
, |xn| > δ1.

But V (x) ≥ α2x
2, therefore |xn| →

n→∞
0. It contradicts to the condition that |xn| > δ1. Thus, there

is the number c ≤ ε that for any x satisfying the inequality V (x) ≤ c one has

V̇ (x) ≥ βV (x)

Let

δ = min(δ1,

√
c

α1

)

and the cylinder
D = {(t, x)|t > a, |x ≤ δ}.

Note that if V (x) ≥ c, then |x| ≥
√
c/α1 ≥ δ.

Assume that |ξ| < δ, x = h(t, ξ) is a solution of the Cauchy problem{
ẋ = F (t, x),
x(t0) = ξ

and v(t) = V (h(t, ξ)). Because ξ 6= 0, then v(t0) > 0 and

v(t) ≥ v(t0)e
β(t−t0)

or
V (h(t, ξ)) ≥ V (ξ)eβ(t−t0)

From the last inequality one can conclude that there is T = T (t0, ξ) such that

V (h(T, ξ)) = c.

Now we will prove that if t > T and the solution x = h(t, ξ) is definite for these values of t, then
V (h(t, ξ)) ≥ c. Assume opposite:

∃t1 > T that V (h(t1, ξ)) < c.
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Let t2 < t1 is the nearest point to t1, where V (h(t2, ξ)) = c and

V (h(t, ξ)) ≤ c ∀t ∈ [t2, t1].

There is t∗ ∈ [t2, t1] such that

v̇(t∗) =
v(t1)− v(t2)

t1 − t2
≤ 0.

Since t∗ ∈ [t1, t2], then 0 < V (h(t∗, ξ)) ≤ c, and therefore

v̇(t∗) = V̇ (h(t∗, ξ)) ≥ βV (h(t∗, ξ)) > 0.

One obtains a contradiction.
Thus, ∀t > T the solution x = h(t, ξ) satisfies the inequality V (h(t, ξ)) ≥ c. This gives |h(t, ξ)| ≥

δ, ∀t > T . 2

Theorem 4.9. If at least one of eigenvalues of a constant matrix A has strictly positive real
part, then the trivial solution of the quasilinear system

ẋ = Ax+ ϕ(t, x)

is unstable.

Exercise 4.9. Prove this theorem.
Hint: use the Chetaev theorem.
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Chapter 5

Introduction to functional differential
equations

This chapter gives an introduction to delay differential equations1.

5.1 Definitions

A more general type of differential equations than considered up to now is type of equations which
is called a functional differential equations. The simplest type of functional differential equations is
”delay differential system of equations” such as

ẋ(t) = G(t, x(g1(t)), x(g2(t)), . . . , x(gn(t))), (5.1)

where x ∈ Rm, gj(t) ∈ [t− r, t], ∀t ≥ t0, (j = 1, 2, . . . , n), for some constant r ≥ 0. For example,
g1(t) = t− 1, g2(t) = t− 2, n = 2, m = 1 and the equation is

ẋ(t) = 3x(t− 1)− x(t− 2).

Definition 5.1. If χ(t) is a function defined at least on [t − r, t], then a new function χt :
[−r, 0] → Rm is defined by

χt(s) = χ(t+ s), s ∈ [−r, 0].

We will denote the set of continuous on [−r, 0] functions with values in D by

QD = {χ ∈ C([−r, 0]) | χ(t) ∈ D ⊂ Rm, ∀t ∈ [−r, 0]}.

Definition 5.2. The equation
ẋ(t) = F (t, xt) (5.2)

with the functional F : J × QD → Rm is called a functional differential equation. Here J is some
interval (α, β).

For any function χ ∈ QD we define the value

‖ χ ‖r= sup
−r≤s≤0

|χ(s)|,

1We follow to the textbook: R.D.Driver. Ordinary and delay differential equations. Springer–Verlag New York
Inc., 1977.
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which can be considered as a norm of the Banach space QRm containing the space of functions
χ ∈ QD.

Example 5.1. For system of equations (5.1) the functional F (t, xt) is defined as

F (t, xt) = G(t, xt(g1(t)− t), xt(g2(t)− t), . . . , xt(gn(t)− t)).

Example 5.2. If the functional is F (t, χ) =
∫ 0

−r
χ(s) ds, then the functional differential

equation is

ẋ(t) =
∫ 0

−r
xt(s) ds =

∫ t

t−r
x(s) ds.

When we were studying existence and uniqueness for system of ordinary differential equations
we had needed to consider a continuity and Lipschitz conditions. These are replaced for a functional
F (t, xt) by the following way.

Definition 5.3. A continuity condition is satisfied if the function F (t, χt) is continuous function
with respect to t ∈ [t0, β) for each given continuous function χ : [t0 − r, β) → D.

Let Q be a subset of J ×QD.

Definition 5.4. The functional F : J ×QD → Rm satisfies a Lipschitz condition on Q (or F
is Lipschitzian on Q) if there exists a positive constant L that

|F (t, χ)− F (t, χ̂)| ≤ L ‖ χ− χ̂ ‖r,

for arbitrary (t, χ) and (t, χ̂) from Q.

Definition 5.5. The functional F : J × QD → Rm is said to be a locally Lipschitzian if for
each given (t0, χ0) ∈ J ×QD there exist numbers a > 0 and b > 0 such that F is Lipschitzian on the
subset

Q = {(t, χ) ∈ J ×QD | t ∈ [t0 − a, t0 + a] ∩ J, χ ∈ QD, ‖ χ− χ0 ‖r≤ b}.

Exercise 5.1. Prove that if the function F : J ×Dn → Rm satisfies the Lipschitz condition (as
a function), then it satisfies the Lipschitz condition as the functional F : J ×QD → Rm.

Definition 5.6. The problem of finding a solution of system (5.2), which satisfies the values

xt0(s) = ψ(s), s ∈ [t0 − r, t0] (5.3)

is called an initial value problem.

5.2 Uniqueness of solution

The uniqueness theorem will use the following result.

Lemma 5.1. Let χ : [t0 − r, β) → Rm be continuous. Then for any t̂ ∈ [t0, β) and any ε > 0
there exists δ = δ(t̂, ε) > 0 such that ∀t ∈ [t0, β) and |t− t̂| < δ:

‖ χt − χt̂ ‖r< ε.
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Proof.
Let t̂ ∈ [t0, β) and ε are arbitrary. Choose β1 that t̂ < β1 < β. Since χ is uniformly continuous

on the closed bounded interval [t0 − r, β1], there exists δ ∈ (0, β1 − t̂) such that if τ and τ̂ belong to
the interval [t0 − r, β1] and |τ − τ̂ | < δ, then

|χ(τ)− χ(τ̂)| < ε/2.

If t ∈ [t0 − r, β) such that |t− t̂| < δ, then t ∈ [t0 − r, β1) and, since |t+ s− (t̂+ s)| = |t− t̂| < δ, we
have

|χt(s)− χt̂(s)| = |χ(t+ s)− χ(t̂+ s)| < ε/2, ∀s ∈ [−r, 0].

Therefore
‖ χt − χt̂ ‖r= sup

−r≤s≤0
|χt(s)− χt̂(s)| ≤ ε/2 < ε.

2

Note that if the functional F : [t0, β)×QD → Rm satisfies continuity condition with respect to t
in [t0, β), then the continuous function ϕ : [t0 − r, β) → D is a solution of the initial value problem
(5.2), (5.3) if and only if

ϕ(t) =

{
ψ(t− t0), ∀t ∈ [t0 − r, t0],
ψ(0) +

∫ t
t0
F (s, ϕs) ds, ∀t ∈ [t0, β).

Theorem 5.1. If the functional F : [t0, β) ×QD → Rm satisfies the continuity condition and
it is locally Lipschitzian. Then the initial value problem (5.2), (5.3) with ψ ∈ QD has at most one
solution on [t0 − r, β1), for any β1 ∈ (t0, β].

Proof.
Suppose that for some β1 ∈ (t0, β] there are two different solutions x = ϕ(t) and x = ϕ̂(t):

ϕ : [t0 − r, β1) → D, ϕ̂ : [t0 − r, β1) → D.

Denote
t1 = inf{t ∈ [t0, β1) | ϕ(t) 6= ϕ̂(t)}.

Note that t0 ≤ t1 < β1 and
ϕ(t) = ϕ̂(t), ∀t ∈ [t0 − r, t1]

or ϕt1 = ϕ̂t1 . Since (t1, ϕt1) ∈ [t0, β1)×QD, there exist numbers a > 0 and b > 0 such that the set

Q = {(t, χ) ∈ J ×QD | t ∈ [t1, t1 + a], χ ∈ QD, ‖ χ− ϕt1 ‖r≤ b}
is a subset of [t0, β)×QD and F is Lipschitzian on Q (with the Lipschitz constant L).

By the previous lemma, there exists δ > 0 (δ < a) such that (t, ϕt) ∈ Q and (t, ϕ̂t) ∈ Q for all
t ∈ [t1, t1 + δ). Since ϕ(t) and ϕ̂(t), ∀t ∈ [t0, β1) are solutions of system (5.2), we have

|ϕ(t)− ϕ̂(t)| ≤ |ϕ(t0)− ϕ̂(t0)|+
∫ t

t0
|ϕ′(s)− ϕ̂′(s)| ds =

∫ t

t1
|ϕ′(s)− ϕ̂′(s)| ds =∫ t

t1
|F (s, ϕs)− F (s, ϕ̂s)| ds.

If t ∈ [t1, t1 + δ), then

|ϕ(t)− ϕ̂(t)| ≤
∫ t

t1
L ‖ ϕs − ϕ̂s ‖r ds.

Therefore, if ∀t ∈ [t1, t1 + δ), then

‖ ϕt−ϕ̂t ‖r= sup
σ∈[−r,0]

|ϕ(t+σ)−ϕ̂(t+σ)| = sup
σ∈[−r,0], σ>t1−t

|ϕ(t+σ)−ϕ̂(t+σ)| ≤
∫ t

t1
L ‖ ϕs−ϕ̂s ‖r ds.

From this it follows that ‖ ϕt − ϕ̂t ‖r= 0 for any t ∈ [t1, t1 + δ) or ϕ(t) = ϕ̂(t) for any t ∈ [t1, t1 + δ).
This contradicts to the definition of t1. 2
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5.3 Existence theorem

Here we denote J = [t0 − r, β).

Theorem 5.2. Let the functional F : [t0, β) × QD → Rm satisfy continuity condition with
respect to t in [t0, β) and let it be locally Lipschitzian. Then the initial value problem (5.2), (5.3)
with ψ ∈ QD has an unique solution on [t0 − r, t0 + ∆), for some ∆ > 0.

Proof.
Since (t0, ψ) ∈ J ×QD and the functional F : [t0, β)×QD → Rm is a locally Lipschitzian (with

the constant L), there are constants a > 0 and b > 0 that F is Lipschitzian on the subset

Q = {(t, χ) ∈ J ×QD | t ∈ [t0 − a, t0 + a] ∩ J, χ ∈ QD, ‖ χ− ψ ‖r≤ b}.

Define a continuous function ψ0(t) on J = [t0 − r, β] by

ψ0(t) =

{
ψ(t− t0), ∀t ∈ [t0 − r, t0],
ψ(0), ∀t ∈ [t0, β).

The function F (t, ψ0
t ) continuously depends on t, hence there exists some constant B1 that

|F (t, ψ0
t )| ≤ B1, ∀t ∈ [t0, t0 + a].

Let B = Lb+B1. There exists a constant a1 ∈ (0, a] such that ∀t ∈ [t0, t0 + a1]:

‖ ψ0
t − ψ ‖r=‖ ψ0

t − ψ0
t0
‖r≤ b.

Choose ∆ > 0 such that
∆ ≤ min(a1, b/B).

Remained part of the proof is the same as the proof of the Picard theorem.
Let U be the set of functions {χ(t) ∈ C(J1)} with the norm

‖ χ ‖= max
t∈J1

(e−L|t−t0||χ(t)|),

where J1 = [t0 − r, t0 + ∆]. This norm is equivalent to the uniform norm on the space of continuous
functions C(J1):

‖ χ ‖1= max
t∈J1

|χ(t)|.

Therefore (U, ‖ · ‖) is a Banach space.
Define the closed set M by

M = {χ(t) ∈ U | χ(t) = ψ(t− t0), ∀t ∈ [t0 − r, t0], |χ(t)− ψ(0)| ≤ b, ∀t ∈ [t0, t0 + ∆]}

Note that if χ ∈M and t ∈ [t0, t0 + ∆], then ‖ χt − ψ0
t ‖r≤ b. Therefore (t, χt) ∈ Q and

|F (t, χt)| ≤ |F (t, χt)− F (t, ψ0
t )|+ |F (t, ψ0

t )| ≤ L ‖ χt − ψ0
t ‖r +B1 ≤ B.

For each χ ∈M define a mapping Tχ by

Tχ(t) =

{
ψ(t− t0), ∀t ∈ [t0 − r, t0],
ψ(0) +

∫ t
t0
F (s, χs) ds, ∀t ∈ [t0, t0 + ∆].

Since |F (s, χs)| ≤ B, there is

|Tχ(t)− ψ(0)| ≤ B∆ ≤ b, ∀t ∈ [t0, t0 + ∆].
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Also Tχ(t) is continuous. Thus Tχ(t) ∈M and we can conclude that T : M →M .
For proving the theorem it is remained to prove that T : M → M is a contraction. In order to

do it we need to find a constant q that 0 < q < 1 and ∀χ1(t) ∈M,χ2(t) ∈M we have:

‖ Tχ1 − Tχ2 ‖< q ‖ χ1 − χ2 ‖ .

Since (t, χ1
t ) ∈ Q, (t, χ2

t ) ∈ Q for all t ∈ [t0, t0 + ∆), we have that

e−L(t−t0)|Tχ1(t)− Tχ2(t)| ≤ e−L(t−t0)
∫ t

t0
|F (s, χ1

s)− F (s, χ2
s)| ds ≤ Le−L(t−t0)

∫ t

t0
‖ χ1

s − χ2
s ‖r ds =

= Le−L(t−t0)
∫ t

t0
max
σ∈[−r,0]

e−L(s−t0+σ)eL(s−t0+σ)|χ1(s+ σ)− χ2(sσ)| ds ≤

≤ Le−L(t−t0)
∫ t

t0
eL(s−t0) max

σ∈[−r,0]
e−L(s−t0+σ)|χ1(s+ σ)− χ2(s+ σ)| ds ≤

≤ Le−L(t−t0)
∫ t

t0
eL(s−t0) ‖ χ1 − χ2 ‖ ds = Le−L(t−t0) ‖ χ1 − χ2 ‖

∫ t

t0
eL(s−t0) ds =

= (1− e−L(t−t0)) ‖ χ1 − χ2 ‖≤ (1− e−L∆) ‖ χ1 − χ2 ‖, ∀t ∈ [t0, t0 + ∆).

Because Tχ1(t) = Tχ2(t) for t ∈ [t0 − r, t0], then we obtained that

‖ Tχ1 − Tχ2 ‖≤ q ‖ χ1 − χ2 ‖

with the constant 0 < q = 1 − e−L∆ < 1. Thus, we have constructed a contraction operator
T : M →M with the closed set M ⊂ U , where U is a Banach space.

From the contraction principle we can conclude that there exists χ(t) ∈M such that

χ(t) =

{
ψ(t− t0), ∀t ∈ [t0 − r, t0],
ψ(0) +

∫ t
t0
F (s, χs) ds, ∀t ∈ [t0, t0 + ∆].

2

The following definitions and theorems are like their counterparts for ordinary differential equa-
tions.

Definition 5.7. Let φ(t) on [t0 − r, β1) and φ̂(t) on [t0 − r, β2) both be solutions of problem
(5.2), (5.3). If β2 > β1, then the solution φ̂(t) is called an extension of φ(t) to [t0−r, β2). A solution
φ(t) of (5.2), (5.3) is nonextendable if it has no extension.

Theorem 5.3. Let F : [t0, β)×QD → Rm satisfy the continuity condition, and let it be locally
Lipschitzian. Then for each ψ ∈ QD, problem (5.2), (5.3) has an unique nonextendable solution.

Exercise 5.2. Prove the theorem.

Lemma 5.2. Let φ(t) be a differentiable function on the bounded open interval (α, β) with

|φ′(t)| ≤ B, t ∈ (α, β).

Then there exist lim
t→α

φ(t) and lim
t→β

φ(t).

Exercise 5.3. Prove the lemma.
The theorem that describes a behavior of nonextendable solution ϕ(t), t ∈ [t0− r, β1) at the end

t = β1 requires additional hypothesis.
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Definition 5.8. The functional F : [t0, β) × QD → Rm is said to be a quasi–bounded if F is
bounded on every set of the form [t0, β1) ×QA where t0 < β1 < β and A is a closed bounded subset
of D.

Because for delay equations we have not proven theorem of continuity with respect to initial
values, we can prove less than it was proven for ordinary differential equations.

Theorem 5.4. (behavior of nonextendable solution at the end). If F : [t0, β) × QD → Rm

satisfies the continuity condition, is locally Lipschitzian and quasi–bounded. Then for each closed
bounded set A ⊂ D and any nonextendable solution ϕ(t), t ∈ [t0 − r, β1) with β1 < β of problem
(5.2), (5.3) there exists t ∈ (t0, β1) that ϕ(t) /∈ A.

Proof.
Assume the opposite assertion that ϕ(t) ∈ A, ∀t ∈ [t0, β1).
Because F is a quasi–bounded and ϕ(t) ∈ A∪Aψ ∀t ∈ [t0− r, β1), then there is a constat B that

|F (t, ϕt)| ≤ B, ∀t ∈ [t0, β1).

This gives that
|ϕ′(t)| ≤ B, ∀t ∈ [t0, β1).

Hence, from the lemma we get that there exists

lim
t→β1

ϕ(t) = ϕ∗.

Note that ϕ∗ ∈ A.
Let us extend the definition of the ϕ(t) to a continuous function on the closed interval [t0− r, β1]

by setting ϕ(β1) = ϕ∗. Then from the continuity condition it follows that F (t, ϕt) is continuous
function on the interval [t0− r, β1]. Thus the equation (5.2) extends to include the point t = β1, i.e.,

ϕ(t) =

{
ψ(t− t0), ∀t ∈ [t0 − r, t0],
ψ(0) +

∫ t
t0
F (s, ϕs) ds, ∀t ∈ [t0, β1].

Applying the existence theorem to the initial value problem{
ż = F (t, zt)
zβ1 = ϕβ1

(5.4)

we conclude that this new problem has a solution z(t) on the interval [β1−r, β1 +∆) for some ∆ > 0.
Thus

z(t) =

{
ϕ(t), ∀t ∈ [β1 − r, β1],
ϕ(β1) +

∫ t
β1

F (s, zs) ds, ∀t ∈ [β1, β1 + ∆).

If we define z(t) for t ∈ [t0 − r, β1 − r] as z(t) = ϕ(t), then

z(t) =


ψ(t− t0), ∀t ∈ [t0 − r, t0],
ψ(0) +

∫ t
t0
F (s, ϕs) ds, ∀t ∈ [t0, β1),

ϕ(t0) +
∫ β1
t0

F (s, zs) ds+
∫ t
β1

F (s, zs) ds, ∀t ∈ [β1, β1 + ∆).

=

{
ψ(t− t0), ∀t ∈ [t0 − r, t0],
ψ(0) +

∫ t
t0
F (s, ϕs) ds, ∀t ∈ [t0, β1 + ∆).

This gives that z(t), t ∈ [t0, β1 + ∆) is an extension of the solution ϕ(t), t ∈ [t0, β1). It contradicts
that the solution ϕ(t), t ∈ [t0, β1) is nonextendable. 2


