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Abstract. This paper presents a hierarchical clustering method named RACHET (Recursive Agglomeration of
Clustering Hierarchies by Encircling Tactic) for analyzing multi-dimensional distributed data. A typical clustering
algorithm requires bringing all the data in a centralized warehouse. This results in O(nd) transmission cost, where
n is the number of data points and d is the number of dimensions. For large datasets, this is prohibitively expensive.
In contrast, RACHET runs with at most O(n) time, space, and communication costs to build a global hierarchy of
comparable clustering quality by merging locally generated clustering hierarchies. RACHET employs the encir-
cling tactic in which the merges at each stage are chosen so as to minimize the volume of a covering hypersphere.
For each cluster centroid, RACHET maintains descriptive statistics of constant complexity to enable these choices.
RACHET’s framework is applicable to a wide class of centroid-based hierarchical clustering algorithms, such as
centroid, medoid, and Ward.
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1. Introduction

Clustering of multidimensional data is a critical step in many fields including data mining [6],
statistical data analysis [1, 12], pattern recognition and image processing [7], and business
applications [2]. Hierarchical clustering based on a dissimilarity measure is perhaps the
most common form of clustering. It is an iterative process of merging (agglomeration)
or splitting (partition) of clusters that creates a tree structure called a dendrogram from
a set of data points. Centroid-based hierarchical clustering algorithms, such as centroid,
medoid, or minimum variance [1], define the dissimilarity metric between two clusters as
some function (e.g., Lance-Williams [13]) of distances between cluster centers. Euclidean
distance is typically used.
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†Oak Ridge National Laboratory is managed by UT-Battelle for the LLC U.S. D.O.E. under Contract
No. DE-AC05-00OR22725.
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We focus on the distributed hierarchical clustering problem. We create a hierarchical
decomposition of clusters of massive data sets inherently distributed among various sites
connected by a network. For practical reasons, the application to distributed and very massive
(both in terms of data points and the number of features, or dimensions, for each point)
datasets raises a number of major requirements for any solution to this problem:

1. Qualitative comparability. The quality of the hierarchical clustering system produced by
the distributed approach should be comparable to the quality of the clustering hierarchy
generated from centralized data.

2. Computational complexity reduction. Asymptotic time and space complexity of a dis-
tributed algorithm should be less than or equal to the asymptotic complexity of the
corresponding centralized approach.

3. Scalability. The algorithms should be scalable with the number of data points, the number
of features, and the number of data stores.

4. Communication acceptability. The data transfer/communication overheads should be
modest. Doing this with minimal communication of data is a challenge.

5. Flexibility. If the solution is based on an existing clustering algorithm, then it should be
applicable to a wide class of clustering algorithms.

6. Visual representation sufficiency. The summarized description of the resulting global
hierarchical cluster structure should be sufficient for its accurate visual representation.

Current clustering approaches do not offer a solution to the distributed hierarchical clus-
tering problem that meets all these requirements. Most clustering approaches [3, 9, 14] are
restricted to the centralized data situation that requires bringing all the data together in a
single, centralized warehouse. For large datasets, the transmission cost becomes prohibitive.
If centralized, clustering massive centralized data is not feasible in practice using existing
algorithms and hardware.

Distributed clustering approaches necessarily depend on how the data are distributed.
Possible combinations are: vertical (features), horizontal (data points), and block fragmen-
tations. For vertically distributed data sets, Johnson and Kargupta [10] proposed the Collec-
tive Hierarchical Clustering (CHC) algorithm for generating hierarchical clusters. The CHC
runs with a O(|S|n) space and O(n)communication requirement, where n is the number of
data points and |S| is the number of data sites. Its time complexity for the agglomeration
phase is O(|S|n2), and the implementation is restricted to single link clustering [1], also re-
ferred to as nearest neighbor clustering. This does not include the complexity for generating
local hierarchies. Parallel based hierarchical clustering approaches [4, 15] can be considered
as a special case of horizontal data distribution. However, these algorithms are tailored to
a specific hardware architecture (e.g., PRAM) or restricted to a certain number of proces-
sors. Moreover, there is a major distinction between parallel and horizontally distributed
approaches: the data are already distributed so that we do not have the luxury of distributing
data for optimal algorithm performance as is often done for parallel computation.

We present a clustering algorithm named RACHET that is especially suitable for very
large, high-dimensional, and horizontally distributed datasets. RACHET builds a global
hierarchy by merging clustering hierarchies generated locally at each of the distributed data
sites. Its time, space, and transmission costs are at most O(n) (linear) in the size of the
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dataset. This includes only the complexity of the transmission and agglomeration phases
and does not include the complexity of generating local clustering hierarchies. Finally,
RACHET’s summarized description of the global clustering hierarchy is sufficient for its
accurate visual representation that maximally preserves the proximity between data points.

The rest of the paper is organized as follows. Section 2 describes the details of the
RACHET algorithm. It first introduces the concept of descriptive statistics for cluster cen-
troids and then derives an approximation to the Euclidean metric based on this concept.
The description of the process of merging two clustering hierarchies concludes this sec-
tion. Section 3 presents time/space/transmission cost analysis of the RACHET algorithm.
Section 4 provides some empirical results on real and synthetic datasets. Error of the ap-
proximation to the Euclidean metric is discussed in Section 5. Finally, prospects for future
work conclude this paper.

1.1. Definitions and notation

Here, we introduce notation and definitions used throughout the paper. Let n denote the
total number of data points, d denote the dimensionality of the data space, and |S| denote
the number of data sites. First, we provide a formulation of the distributed hierarchical
clustering problem.

Definition 1. The dendrogram [5] is a tree-like representation of the result of a hierarchical
clustering algorithm. It can be viewed as a sequence of partitions of the data into clusters
beginning with the whole data set at the root node of the tree at the top.

Problem Definition. The distributed hierarchical clustering problem is the problem of cre-
ating a global hierarchical decomposition into clusters (represented by a dendrogram) of a
data set distributed across various data sites connected by a network. More formally,

Given:
1. n data objects with d features each
2. a distribution of these data objects across S = {S1, S2, . . . , S|S|} data sites (a horizontal

distribution), and
3. a set D = {D1, D2, . . . , D|S|} of local hierarchical decompositions (or local

dendrograms) of clusters of data objects in Si , i = 1, . . . , |S|
Find: A global hierarchical decomposition (or global dendrogram) of clusters of n data
objects,
such that the global dendrogram generated from |S| data sites is similar to the dendrogram
generated from the centralized dataset of n data objects as much as possible.

For a horizontally distributed case, the ideal creation of a global dendrogram should fulfill
the following requirements:

1. It should require minimum data transfer across the network: O(n) or O(n log n) but
not O(nd) or higher, because the communication cost will be prohibitive for high-
dimensional datasets.
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2. It should be fast to merge local dendrograms: O(n) or O(n log n) but not O(n2) or
higher, because time and space cost will be too high for massive datasets.

3. It should be of a comparable quality relative to the centralized dendrogram.

Next, we will define the Descriptive Statistics, or summarized cluster representation. This
is one of the key concepts of this paper. Let C = { �p1, �p2, . . . , �pNc} ⊂ Rd be the set of data
points in a cluster.

Definition 2. The cluster centroid �c = ( fc1, fc2, . . . , fcd) is the mean vector of all the
data points in the cluster. Hence, the centroid of cluster C is defined as:

�c = 1

Nc

i=Nc∑
i=1

�pi (1)

Let pi j denote the j-th component of the data point �pi . Thus, the j-th component of �c is
given by:

fcj = 1

Nc

Nc∑
i=1

pi j , j = 1,d. (2)

Definition 3. The radius of the cluster Rc is defined as the average squared Euclidean
distance of a point from the centroid of the cluster. More formally, Rc is given by

Rc :=
[∑Nc

i=1 ( �pi − �c)2

Nc

] 1
2

(3)

Definition 4. The covering hypersphere (�c, Rc) of the cluster C is defined as the hyper-
sphere with the center �c and the radius Rc. Each cluster C can be represented by a covering
hypersphere (�c, Rc). In what follows, the terms “cluster” and its “hypersphere” will be used
interchangeably throughout the paper.

Selection and effective description of cluster Descriptive Statistics (DS), or summarized
cluster representation, is an important step in merging local clustering hierarchies and in
visualization of the global hierarchy. DS have to meet a number of major requirements:

• They should occupy much less space than the naive representation, which maintains all
objects in a cluster.

• They should be adequate for efficiently calculating all measurements involved in making
clustering decisions such as merging or reconfiguration.

• They should be sufficient to visually represent the global hierarchy.

Definition 5. The Descriptive Statistics (DS) of the cluster centroid �c are defined as a
6-tuple DS(�c) = (Nc, NORMSQc, Rc, SUMc, MINc, MAXc), where
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1. Nc is the number of data points in the cluster.
2. NORMSQc is the square norm of the centroid defined as:

NORMSQc :=
j=d∑
j=1

f 2
cj (4)

3. Rc is the radius of the cluster
4. SUMc is the sum of the components of the centroid defined as:

SUMc := Nc

j=d∑
j=1

fcj (5)

5. MINc is the minimum value of the centroid components defined as:

MINc := Nc min
1≤ j≤d

fcj (6)

6. MAXc is the maximum value of the centroid components defined as:

MAXc := Nc max
1≤ j≤d

fcj (7)

Finally, we define some other notations used for building a global dendrogram:

1. d2(�c1, �c2) is the squared Euclidean distance between two cluster centroids, �c1 and �c2. It
is given by:

d2(�c1, �c2) =
d∑

j=1

(
fc1 j − fc2 j

)2
. (8)

2. d2
approx(�c1, �c2) is the approximation to the squared Euclidean distance. It is defined by

Eq. (19). dapprox(�c1, �c2) denotes the square root of d2
approx(�c1, �c2).

3. NN(i) is the nearest neighbor of the i th object.
4. DISS(i) is the value of dissimilarity (e.g., Euclidean distance) between the i th object and

its nearest neighbor.

2. The RACHET algorithm

We assume the data are distributed across several sites where each site has the same set
of features but on different items. Note that this is a horizontal distribution of the data.
Homogeneity is assumed not only for the type of features of the problem domain but
also for the units of measurements of those features. Next, we use Euclidean distance as the
measure of dissimilarity between individual points. Finally, the implementation of RACHET
assumes a centroid-based hierarchical clustering algorithm, such as centroid, medoid, or
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Figure 1. Control flow of RACHET.

minimum variance (Ward’s). An overview of these hierarchical clustering methods can be
found in [1].

Figure 1 presents the control flow of RACHET. Phase 1 is designed to generate a local
dendrogram from each of the distributed data sites using a given off-the-shelf centroid-based
hierarchical clustering algorithm. For each node of the dendrogram, RACHET maintains
Descriptive Statistics (DS) about the cluster at that node. The space complexity of the DS is
constant. This summary is not only efficient because it requires much less space than storing
all the data points in the cluster, but also effective because it is sufficient for calculating
all measurements involved in making clustering decisions in consecutive phases. More
details on DS are presented in Section 2.1. We adapted Ward’s agglomerative hierarchical
clustering algorithm to generate and maintain the DS.

After Phase 1, we obtain a list of dendrograms that captures the major information
about each cluster centroid needed for making clustering decisions in Phase 3. In Phase 2,
local dendrograms are transmitted to a single merger site. The agglomeration of these
dendrograms is performed at the merger site.

Phase 3 is the core of RACHET. The main task of Phase 3 is to cluster local dendrograms
into a global dendrogram. We adapted an agglomerative hierarchical algorithm for clustering
data points [15] by applying it directly to local dendrograms. The algorithm is shown in
figure 2. One of the key components in this algorithm is the call of the merge-dendrograms( )
method that merges two dendrograms. The details of this method are discussed in Section
2.3. Due to the lack of space, we omit description of the find best match( ) method. Its
pseudo code is available at http://www.csm.ornl.gov/∼ost/RACHET.

2.1. Centroid descriptive statistics

Given the descriptive statistics (see Definition 5) of two cluster centroids �c1 and �c2, this
section provides a mechanism for updating the descriptive statistics of cluster �c formed by
merging clusters �c1 and �c2 without regenerating them from “scratch”.
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Figure 2. An efficient algorithm to build a global dendrogram.

Theorem 2.1. Assume that DS(�c1) = (Nc1 , NORMSQc1
, Rc1 , SUMc1 , MINc1 , MAXc1) and

DS(�c2) = (Nc2 , NORMSQc2
, Rc2 , SUMc2 , MINc2 , MAXc2) are the descriptive statistics of

two disjoint clusters �c1 and �c2, respectively. Then the following statements hold for the
descriptive statistics of cluster �c that is formed by merging these clusters:
1. Nc = Nc1 + Nc2 .
2. NORMSQc = 1

Nc1 + Nc2
{Nc1 NORMSQc1

+ Nc2 NORMSQc2
− Nc1 Nc2

Nc1 +Nc2
d2(�c1, �c2)}, where

d2(�c1, �c2) is the squared Euclidean distance between the two centroids.
3. Rc = [ 1

Nc1 +Nc2
{Nc1 R2

c1
+ Nc2 R2

c2
+ Nc1 Nc2

Nc1 +Nc2
d2(�c1, �c2)}] 1

2

4. SUMc = SUMc1 + SUMc2

5. MINc ≥ MINc1 + MINc2

6. MAXc ≤ MAXc1 + MAXc2

Proof: In order to evaluate the square norm of centroid �c that is formed by merging disjoint
clusters �c1 and �c2, we first note that based on Eq. (2) the j-th component of �c can be defined
by the relation

Nc fcj = Nc1 fc1 j + Nc2 fc2 j

Squaring both sides of this equation gives

N 2
c f 2

cj = N 2
c1

f 2
c1 j + N 2

c2
f 2
c2 j + 2Nc1 Nc2 fc1 j fc2 j (9)

The cross-product term can be written as

2 fc1 j fc2 j = f 2
c1 j + f 2

c2 j − (
fc1 j − fc2 j

)2
(10)
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Substituting Eq. (10) into Eq. (9) and dividing both sides by N 2
c then gives

f 2
cj = 1

Nc1 + Nc2

{
Nc1 f 2

c1 j + Nc2 f 2
c2 j − Nc1 Nc2

Nc1 + Nc2

(
fc1 j − fc2 j

)2
}

Summing both sides of this equation over j results in

d∑
j=1

f 2
cj = 1

Nc1 + Nc2

{
Nc1

d∑
j=1

f 2
c1 j + Nc2

d∑
j=1

f 2
c2 j − Nc1 Nc2

Nc1 + Nc2

d∑
j=1

(
fc1 j − fc2 j

)2

}

(11)

This proves the update formula for the NORMSQc.
From the definition of cluster centroid �c, it follows that its squared radius can be written

as:

Nc R2
c =

Nc∑
i=1

d∑
j=1

(pi j − fcj )
2 =

d∑
j=1

Nc∑
i=1

p2
i j − Nc

d∑
j=1

f 2
cj (12)

If cluster �c is formed by merging two disjoint clusters �c1 and �c2, then the first term in Eq. (12)
can be decomposed into the sum of squared coordinates of data points in the first cluster
and the sum of squared coordinates of points in the second cluster. That is,

d∑
j=1

Nc∑
i=1

p2
i j =

d∑
j=1

Nc1∑
i=1

p2
i j +

d∑
j=1

Nc2∑
i=1

p2
i j (13)

Substituting Eqs. (11) and (13) into Eq. (12) and regrouping the terms then gives

Nc R2
c =

(
d∑

j=1

Nc1∑
i=1

p2
i j − Nc1

d∑
j=1

f 2
c1 j

)
+

(
d∑

j=1

Nc2∑
i=1

p2
i j − Nc2

d∑
j=1

f 2
c2 j

)

+ Nc1 Nc2

Nc1 + Nc2

d∑
j=1

(
fc1 j − fc2 j

)2

Applying Eq. (12) to clusters �c1 and �c2, the last equation can be written as

Nc R2
c = Nc1 R2

c1
+ Nc2 R2

c1
+ Nc1 Nc2

Nc1 + Nc2

d2(�c1, �c2)

This proves the update formula for the Rc.
To derive the lower bound on MINc of the centroid �c, we note that each component j of

�c can be represented as

Nc fcj =
Nc∑

i=1

pi j =
Nc1∑
i=1

pi j +
Nc2∑
i=1

pi j = Nc1 fc1 j + Nc2 fc2 j (14)
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By definition of MINc1 and MINc2 , it follows that

fc1 j ≥ 1

Nc1

MINc1 and fc2 j ≥ 1

Nc2

MINc2 for j = 1, . . . , d.

Hence, Eq. (14) can be estimated as

Nc fcj ≥ MINc1 + MINc2

Taking the minimum from both sides of this inequality over j proves the lower bound
for the MINc. The update formulas for the other parameters of DS(�c) can be proven
similarly. ✷

2.2. Euclidean distance approximation

From Eq. (8), it follows that in order to compute the Euclidean distance between centroids
from different local datasets would require the transmission of all d centroid components.
This approach would involve the transmission of cluster centroids represented by each
node of the dendrogram generated at each of the |S| local datasets. This would result in a
transmission cost of O(nd), which can be prohibitively high.

Given the DS of each cluster, we can derive an approximated distance between the two
cluster centroids. Equation (8) can be expanded as follows:

d2(�c1, �c2) =
d∑

j=1

f 2
c1 j +

d∑
j=1

f 2
c2 j − 2

d∑
j=1

fc1 j fc2 j (15)

d2(�c1, �c2) = NORMSQc1
+ NORMSQc2

− 2
d∑

j=1

fc1 j fc2 j (16)

If the cross-product term is ignored, then the distance can be approximated by the sum of
square norms of the centroids. This results in a significant error. To reduce this error, we
can place a non-zero upper and lower bound on the cross-product term:

1

Nc1 Nc2

MINc1 SUMc2 ≤
d∑

j=1

fc1 j fc2 j ≤ 1

Nc1 Nc2

MAXc1 SUMc2 (17)

or

1

Nc1 Nc2

MINc2 SUMc1 ≤
d∑

j=1

fc1 j fc2 j ≤ 1

Nc1 Nc2

MAXc2 SUMc1 (18)

Inequalities (17) and (18) hold, if each component of the cluster centroid is positive, i.e.
fcj > 0, ∀c and j = 1, . . . , d . Otherwise, for O(|S|) communication cost, we can broadcast



166 SAMATOVA ET AL.

the global constant CONST such that

pnew
i j = pold

i j + CONST > 0

for each component j of the data point �pi . Taking the maximum of the lower bounds and
the minimum of the upper bounds in (17) and (18) leads to the following bounds on the
Euclidean distance:

d2
lower(�c1, �c2) = max

{
0, NORMSQc1

+ NORMSQc2

− 2
1

Nc1 Nc2

min
{
MAXc1 SUMc2 , MAXc2 SUMc1

}}
d2

upper(�c1, �c2) = NORMSQc1
+ NORMSQc2

− 2
1

Nc1 Nc2

max
{
MINc1 SUMc2 , MINc2 SUMc1

}
Taking the simple mean of the minimum and the maximum square distances gives an
approximation of the squared Euclidean distance between two centroids

d2
approx(�c1, �c2) = d2

lower + d2
upper

2
(19)

2.3. Merging two dendrograms

Given two datasets S1 and S2 and their dendrograms D1 and D2 generated by a hierarchical
clustering algorithm applied locally to each data set, figure 3 illustrates four different cases
(out of six possible) of merging the two dendrograms (figure 3(a)) into dendrogram Dnew.

Case 1 (figure 3(b)). This case is designed to merge two well separated datasets. Two
clusters, �c1 and �c2, are well separated if their hyperspheres do not intersect. That is,

d(�c1, �c2) ≥ Rc1 + Rc2 .

In this case, a new parent node, Dnew, is created and dendrograms D1 and D2 become the
children of the new node. The descriptive statistics DS(�cnew) of the new cluster are updated
according to Theorem 2.1.

Case 2. Here, the data points of the first cluster are contained in the hypersphere with
center �c2 and radius Rc2 , i.e.

d(�c1, �c2) < Rc2 .

This case is further subdivided into two subcases:
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Figure 3. Four cases of merging two dendrograms. (a) Two dendrograms D1 and D2. (b) Merging two well
separated clusters (Case 1). (c) Making cluster S1 a subcluster of cluster S2 provided a proper containment of
cluster S1 in cluster S2 (Case 2a). (d) Merging cluster S1 with the best matched subcluster of cluster S2 provided
a proper containment of cluster S1 in cluster S2 (Case 2b). (e) Merging two overlapping clusters (Case 4).

Case 2a (figure 3(c)). The first cluster (�c1, Rc1) is well separated from any other child
cluster (�c2 j , Rc2 j ) of the second cluster (�c2, Rc2), j = 1, 2, . . .. In this case, dendrogram D1

becomes a new child of dendrogram D2. The descriptive statistics DS(�cnew) are updated
similarly to Case 1.

Case 2b (figure 3(d)). The first cluster (�c1, Rc1) overlaps with one or more child clusters
(�c2 j , Rc2 j ) of the second cluster (�c2, Rc2), j = 1, 2, . . .. Here the child cluster that matches
best with dendrogram D1 is selected to be merged with this dendrogram using a recursive call
to the merge dendrograms( ) process. There are a number of possible choices for defining a
“best match”. One choice for the best match is the cluster that has the largest intersection vol-
ume with the candidate cluster. The new node that is returned by the merge dendrograms( )
process replaces the selected child in dendrogram D2. If the new node Dnew has more than
two children, then its descriptive statistics are obtained by repeatedly applying Theorem 2.1
to two children at a time.

Case 3. This case addresses the situation when data points of the second cluster are
contained in the hypersphere with center �c1 and radius Rc1 , i.e.

d(�c1, �c2) < Rc1 .

This case is a degenerate example of Case 2.
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Case 4 (figure 3(e)). This last case is designed to merge partially overlapped clusters, i.e.

(
d(�c1, �c2) < Rc1 + Rc2

)
and

(
d(�c1, �c2) > Rc1 or d(�c1, �c2) > Rc2

)
.

This case tries to improve the quality of the clustering by reconfiguring the children of both
dendrograms D1 and D2. First, a new parent node, Dnew, with D1 and D2 as its children is
created and its DS are updated like in case 1. Second, the children of both dendrograms are
partitioned into three categories:

1. The D′
1 category that contains all the children of D1 that do not overlap with (�c2, Rc2)

2. The D′
2 category that contains all the children of D2 that do not overlap with (�c1, Rc1)

3. The D12 category that includes the children that overlap with both (�c1, Rc1) and (�c2, Rc2).

Next, all children that are not in the D′
1 category are removed from D1. The DS about D1

are updated to reflect these changes. If the modified node D1 has more than one child, then
its descriptive statistics are obtained by repeatedly applying Theorem 2.1 to two children
at a time. Otherwise, the D1 node is replaced by its only child. Similar steps are done for
D2. Finally, the build-global-dendrogram( ) process is called using the children in the D12

category. The node that is returned by this method becomes a new child of Dnew.
Figure 4 describes an algorithm that merges two clustering hierarchies.

Note that definitions of several methods in figure 4 such as create-parent( ), add-child( ),
find best match( ), delete-children( ), update-DS( ) are omitted in the paper due to the lack
of space. The pseudo codes of these methods can be found at http://www.csm.ornl.gov/
∼ost/RACHET.

3. Complexity analysis

This section presents complexity analysis for Phase 2 and Phase 3 (figure 1) of the RACHET
algorithm. The overall cost of transmitting the local dendrograms to the merger site (Phase 2)
is given by:

Transmissiontotal =
|S|∑
i=1

Transmission(i)

where Transmission(i) is the cost of transmission of a given local dendrogram i . Given
the nature of the dendrogram, there is a total of 2ni − 1 nodes in the dendrogram with ni

leaf nodes. We use an array-based format for the dendrogram representation as described
in [10]. In this format, there are 2ni − 1 elements in the array. Each element in the array
contains at most 4 items to represent each node with additional 6 items to represent the
descriptive statistics about the cluster centroid associated with each node. Thus, the cost of
transmission of a given local dendrogram ican be written as:

Transmission(i) = O((4 + 6) × (2ni − 1)) = O(ni )
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Figure 4. An algorithm to efficiently merge two dendrograms.

Therefore, the total cost of transmission for Phase 2 is given by:

Transmissiontotal = O(n) (20)

In order to evaluate time and space complexity of generating the global dendrogram
(Phase 3), first we analyze the time and space complexity of the merge-dendrograms( )
method (figure 4), the key component of Phase 3. The merge-dendrograms( ) algorithm uses
a recursive top-down strategy (with no backtracking) to efficiently merge two dendrograms.
The recursion stops when Case 1, Case 2a, or Case 3a (“stopping” cases) happens or a leaf
node is reached. Otherwise, the merge-dendrograms( ) or the build-global-dendrogram( )
process proceeds recursively. In constant time we can decide which of the six cases for
merging the two dendrograms occurs. Assuming that the branching factor B of a dendrogram
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is a constant, we can perform basic operations on dendrograms (adding and deleting a
child, updating descriptive statistics, finding best match, etc.) required by each case in
constant time as well. Every time a non-stopping case is selected, we descend a level in the
dendrogram. If the average depth of a dendrogram is O(logB n), merging two dendrograms
requires on average O(logB n) time. However, for very unbalanced dendrograms, the worst
case for merging two dendrograms requires O(n) time. This is an upper bound. As for
the space cost of the merge-dendrograms( ) method, we need O(n) space to store both
dendrograms and O(logB n) average stack space to process the recursion. Thus, the merge-
dendrograms( ) method requires O(n) space.

To compute the overall time and space costs of Phase 3 described by the build-global-
dendrogram( ) algorithm (figure 2), we first note that this algorithm is an adaptation of
the hierarchical clustering algorithm [15]. There are two main parts in this algorithm: the
initialization part represented by lines (1) through (4) and the agglomeration part represented
by lines (6) through (11). Computing the array storing each dapprox(�ci , �c j ) (line (1)) requires
O(|S|2) space and time. Given this array, the initialization of arrays storing each NN(i)
and DISS(i) adds a factor of O(|S|) and O(|S|2) to the overall space and time complexity,
respectively. Thus, the time and space complexities of the initialization part of the algorithm
are given by:

Timeinit = O(|S|2) (21)

Spaceinit = O(|S|2) (22)

The agglomeration part that starts on line (6) repeats |S| − 1 times. Determining the
two closest dendrograms (lines (7) through (9)) can be performed in O(|S|) time by ex-
amining each dendrogram’s best match. Based on the complexity analysis of the merge-
denrograms( ) algorithm, the agglomeration in line (10) requires O(n) time and O(n) space.
Finally, the updating step (line (11)) can be performed in O(|S|) time for metrics that sat-
isfy the reducibility property [14]. Otherwise, the algorithm requires at most O(|S|2) per
iteration to update the arrays. Thus, the time complexity of the agglomeration part of the
algorithm is given by:

Timeagglom = O((|S| − 1) · |S|) + O((|S| − 1) · n) + O((|S| − 1) · |S|2)
= O(|S|2) + O(|S|n) (23)

The space complexity of the agglomeration part of the algorithm is given by:

Spaceagglom = O(|S|2) + O(n) (24)

Hence, the overall time and space complexity for hierarchical clustering of local dendro-
grams presented in figure 2 is given by:

Timetotal = Timeinit + Timeagglom

Spacetotal = Spaceinit + Spaceagglom
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Using the time and space costs as given in Eqs. (21) through (24), the total time and space
cost for Phase 3 is given by:

Timetotal = O(|S|2) + O(|S|n)

Spacetotal = O(|S|2) + O(n)

Which are effectively O(n), when |S| is constant and |S| � n.

4. Empirical evaluation

In this section, we evaluate the effectiveness of RACHET on several datasets. Tests are
done on synthetic datasets and also on “real world” datasets from the ML Repository at UC
Irvine, available at http://www.ics.uci.edu/AI/ML/MLDBRepository.html. We use Ward’s
agglomerative hierarchical clustering algorithm [1] for generating local dendrograms in all
of our experiments.

4.1. Experimental methodology

In order to evaluate the effectiveness of the RACHET algorithm relative to the centralized
Ward’s clustering algorithm, we use the method described by Kargupta et al. [11]. The
dendrograms generated in the centralized and distributed fashion are “cut” at different
levels such that the same number of clusters, l, results from each. Then, an adjacency
matrix is constructed as follows. The element ai j of the adjacency matrix is one if the
i th and j th data points belong to the same cluster. Otherwise it is zero. The error E(l) of
misclassifications comparing the centralized and distributed algorithms is measured as the
ratio of the sum of absolute differences between elements of adjacency matrices to the total
number of elements. More formally, E(l) is defined as:

E(l) =
∑n

j=1

∑n
i=1 |ci j − di j |
n2

, (25)

where ci j and di j are elements of the adjacency matrix for centralized and distributed
algorithm, respectively.

4.2. Results for synthetic data sets

The main purpose of this section is to study the sensitivity of RACHET to various char-
acteristics of the input. The characteristics include various partitions of data points across
data sites, the number of data sites, and different dimensionality of data. We first introduce
the synthetic data sets.

Synthetic data was created for dimensionality d = 2, 4, 8, and 16. For a given value of
d, data was sampled from four Gaussian distributions (hence number of clusters K = 4).
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The number of points in each Gaussian is n/K and its mean vector is sampled from a uni-
form distribution on [min val + k · max val, max val + k · max val] for k = 0, . . . , K − 1.
The values for min val and max val are 5 and 15, respectively. Elements of the diagonal
covariance matrix are sampled from a uniform distribution on [0, min val/6]. Hence, these
are fairly well-separated Gaussians, an ideal situation for a centralized Ward’s clustering
algorithm. Note that E(l) for l = K in (25) is calculated with the correct classification of
points by the centralized algorithm. In many real world data sets, the behavior of the cen-
tralized algorithm is not “best-case” for a given K , hence the misclassification error of the
distributed algorithm relative to the centralized algorithm is not necessarily an appropriate
measure (and indeed it is as demonstrated in Table 4). In this case, a comparison with a
known classifier might be preferred.

We test the performance of the algorithm with different numbers of data sites and various
distributions of data points across data sites. Note that the “best-case” scenario for RACHET
is when all points of the same cluster are assigned to be in a single data site (homogeneous
assignment). The “worst case” scenario most likely occurs when each data site contains a
subset of points from each of the K clusters (heterogeneous assignment). Table 1 shows the
percentage of misclassifications of our algorithm relative to the centralized algorithm for
2, 4, and 6 data sites with a heterogeneous assignment of data points. More precisely, ni

(i = 0, . . . , K − 1) points are randomly selected from each Gaussian and assigned so that
each data site has points from each of the Gaussians. For our experiments, ni is chosen as
(n/K )/|S| so that each data site has roughly the same number of points from each Gaussian.
The total number of data points n = 1024. The dendrograms were split at level l = 2, 4, 6, 8,
and 10. Since we use random sampling in creating synthetic data sets and assigning points
to data sites, here we present the average of twenty-five different runs of the distributed
algorithm. We generate a synthetic data set and prepare five different random assignments
of data points to sites. We take the average of the five resulting adjacency matrices. Each
average value is rounded off to the nearest Boolean value. Then we average the obtained
misclassification errors across five different synthetic data sets.

We can make an observation from the Table 1 that RACHET achieves good performance
at a higher division level of the dendrogram. Its behavior on the synthetic data remains

Table 1. Percentage of misclassifications at different level of division of the global dendrogram generated from
|S| = 2, 4, and 6 sites compared to the centrally generated dendrogram.

d = 2 d = 4 d = 8 d = 16
Divison

level |S| = 2 |S| = 4 |S| = 6 |S| = 2 |S| = 4 |S| = 6 |S| = 2 |S| = 4 |S| = 6 |S| = 2 |S| = 4 |S| = 6

2 46% 32% 36% 22% 36% 36% 46% 41% 39% 28% 20% 28%

4 9% 24% 27% 19% 9% 22% 14% 12% 12% 9% 13% 10%

6 9% 12% 8% 9% 12% 10% 12% 13% 12% 5% 12% 12%

8 14% 10% 10% 10% 14% 13% 11% 15% 14% 8% 14% 16%

10 17% 11% 12% 11% 12% 13% 13% 13% 14% 8% 16% 17%

Results are for synthetic data sets of size n = 1024 and dimension d = 2, 4, 8, and 16 with heterogeneous assignment
of points to data sites.
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roughly unchanged with the number of dimensions and the number of data sites. RACHET
shows the worst performance for division level 2, which seems quite natural for the “worst-
case” scenario of heterogeneous assignment of data items to data sites. We have not observed
the degradation of performance at this division level for the homogeneous assignment of
data points.

4.3. Results on real-world data sets

We have tested the algorithm on 3 publicly available “real-world” datasets obtained from
UCI ML Repository: the Boston Housing data, the E.coli data, and the Pima Indians Diabetes
data. Table 2 provides a brief summary of these data sets (see Appendix A for more detailed
dataset statistics by features).

The E .coli dataset contains 336 data points in 7 dimensions that are classified into 8
clusters. Figure 5 shows the density plot constructed based on the adjacency matrix. The
matrix is obtained by the centralized algorithm with the division level set to 8. Figure 6
shows the density plot obtained by our algorithm for the same division level with two
data sites. Figure 7 shows their difference. The error of misclassification relative to the
centralized algorithm is 9%.

Table 3 summarizes the comparative results at different levels of division of the dendro-
gram between the centrally generated dendrogram and the global dendrogram generated
from two and four data sites for all three data sets. For each data set, experiments are run

Table 2. Brief summary of the three data sets from the UCI ML Repository.

Data set No. of items n No. of features d No. of classes

E.coli 336 7 8

Boston Housing 506 14 N/A

Pima Indians Diabetes 768 8 2

Table 3. Percentage of misclassifications at different level of division of the global dendrogram generated from
|S| = 2 and 4 sites compared to the centrally generated dendrogram.

Boston Housing E.coli Pima Indians Diabetes
Divison
level |S| = 2 |S| = 4 |S| = 2 |S| = 4 |S| = 2 |S| = 4

2 49% 34% 32% 45% 49% 47%

4 29% 34% 8% 32% 36% 43%

6 26% 24% 9% 29% 31% 36%

8 20% 18% 9% 21% 17% 37%

10 18% 17% 10% 22% 16% 29%

12 14% 13% 10% 22% 15% 26%

Results are for real data with random assignment of points to data sites.
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Figure 5. Density plot at division level 8 for centralized clustering of the E.coli data.

Figure 6. Density plot at division level 8 for distributed clustering of the E.coli data with two data sites.

five times with different random assignment of data points to data sites and the results
are averaged over these runs. No class labels have been used. Note that the performance
does not change with the number of dimensions. It improves at higher division levels as
opposed to the results on the Boston Housing data provided in [10] for vertical (by features)
distribution of data items across data sites.
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Figure 7. Difference between adjacency matrices obtained for centralized and distributed algorithm at division
level 8 for the E.coli data with two data sites.

Comparing the results for real (Table 3) and synthetic (Table 1) data sets, we see that
the accuracy of RACHET is slightly worse for real data sets. There are several reasons
for the performance deterioration. First, the real data sets are more heterogeneous in terms
of the units of measurements and the range of values for the parameters of descriptive
statistics. This is illustrated by the summary statistics in Appendix A. Second, the error
of misclassification is evaluated relative to the centralized algorithm (see (25)). It may
not necessarily be a good measure of RACHET’s performance since the behavior of the
centralized algorithm may be poor for some real world data sets. For example, Table 4
demonstrates that the centralized algorithm performs worse than the distributed algorithm
when compared with the clustering results for known class labels.

We also test the scalability of RACHET with the number of data sites. While the perfor-
mance for the Boston Housing data (see Table 3), like the performance for synthetic data
sets, remains roughly unchanged as the number of data sites increases, the performance

Table 4. Comparative results have between clusters identified by class labels and clusters obtained by the cen-
tralized algorithum at the division level of the dendrogram set to the number of classes and the global dendrogram
generated from |S| = 2 and 4 sites at the same division level.

Clusters with known class labels compared to:

Data set # Classes Centralized |S| = 2 |S| = 4

E.coli 8 22% 17% 20%

Pima Indians Diabetes 2 50% 39% 49%
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for the E.coli and Pima Indians Diabetes data sets degrades. We have not identified the
reasons for the performance degradation of the latter data sets; however, we expect better
scalability with the number of data sites by enriching the descriptive statistics so that a
desirable trade-off between transmission cost and accuracy is achieved. Currently, we are
investigating approaches in this direction such as using Principal Component Analysis [8],
providing low-degree polynomial approximations to feature vectors, as well as explicitly
adding coordinates of cluster centroids corresponding to some division level k, k � n, of
each local dendrogram.

5. Discussion

5.1. Error analysis

In this section, we present a brief discussion of the error in our Euclidean distance approxi-
mation (19). Let ε(�c1, �c2) denote an absolute error of the approximation for the Euclidean
distance between two centroids �c1 and �c2 defined as:

ε(�c1, �c2) = |d(�c1, �c2) − dapprox(�c1, �c2)| (26)

First, we make several observations about the behavior of ε(�c1, �c2).

Observation 1. If MINc1 = MAXc1 then ε(�c1, �c2) = 0 for any centroid �c2.

In other words, if one of the centroids lies on the bissecting line (i.e., all the vector
coordinates are the same), then the approximated distance equals the exact distance.

Observation 2. If MINc1 �= MAXc1 and MINc2 �= MAXc2 then

max
�c2

ε(�c1, �c2) = ε(�c1, �c1) and max
�c1

ε(�c1, �c2) = ε(�c2, �c2).

In other words, the absolute error achieves its maximum value when centroids are very
close to each other provided neither of them lies on the bissecting line.

Observation 3. Let �c be any data point on the bissecting line (e.g., unit vector). By
Observation 1, descriptive statistics of �c1 and �c2 are sufficient for the exact calculation
of the low and upper bounds for dapprox(�c1, �c2) defined as:

|d(�c1, �c) − d(�c2, �c)| ≤ dapprox(�c1, �c2) ≤ d(�c1, �c) + d(�c2, �c)

Hence,

ε(�c1, �c2) ≤ 2 · min{d(�c1, �c), d(�c2, �c)} (27)

The proofs of these observations follow from elementary algebra and are omitted here.
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Figure 8. Absolute error plot for the first centroid set to (50,55) and the second centroid set to all integers between
0 and 100.

Figure 8 illustrates the behavior of the absolute error in 2D when the coordinates of �c1 are
set to (50, 55) and the coordinates of �c2 are set to all possible integers between 0 and 100.
We can see that the absolute error increases when �c2 approaches �c1 and equals zero when
�c2 reaches the bissecting line (x = y). The maximum value of the absolute error depends
on the location of �c1 as can be seen in figure 9 when �c1 = (99, 89) and is bounded by its
distance to the bissecting line.

Figure 9. Absolute error plot for the first centroid set to (99,89) and the second centroid set to all integers between
0 and 100.
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In spite of the fact that the absolute error (see (27)) of the Euclidean distance approx-
imation can be large depending on the location of centroids, the overall performance of
RACHET is still reasonably good as demonstrated on both synthetic and real datasets in
Section 4. There is a heuristic explanation for this behavior. Note that if two centroids are
very close to each other, then the merge dendrograms( ) subroutine (see figure 4) will mis-
classify them as belonging to Case 1, i.e. well separated clusters, as opposed to one of the
overlapping cases (Case 2, 3, or 4). In this situation, the recursion stops instead of refining
the process of merging local dendrograms. However, this situation is more likely to occur
closer to the leaves of local dendrograms rather than the roots. Many of our experiments on
synthetic and real data sets support this statement with a few exceptions for some specifi-
cally designed assignments of data points to data sites. Hence, the performance of RACHET
will degenerate more at the division level close to the leaves of the global dendrogram and
will remain acceptable at moderate division levels.

5.2. Future work

Empirical results on synthetic Gaussian data indicate that RACHET provides a compara-
ble quality solution to the distributed hierarchical clustering problem while being scalable
with both the number of dimensions and the number of data sites. Results on the small
real-world UCI ML data sets indicate that RACHET can provide a more effective clustering
solution than the solution generated by the centralized clustering. The reason for using
small real data sets is that the goal at this stage is to demonstrate ability to create a com-
parable quality global dendrogram from distributed local dendrograms within reasonable
requirements for the time, space, and communication cost. However, based on the theo-
retical results for linear time/space/communication complexity of RACHET, the next step
is to study the efficiency of RACHET in dealing with very large (gigabytes or terabytes)
and very high-dimensional (thousands of features) real data sets. Example of such mas-
sive datasets might be the Reuters text classification database consisting of the documents
with hundreds of thousands of words (i.e., hundreds of thousands of dimensions) or the
PCMDI archive of climate simulation model outputs with each output in the order of a
couple of terabytes and 2500 or more dimensions. We believe that the RACHET algorithm
is scalable to such sizes of the problem because it transforms a large problem into a set
of small subproblems with cumulative computational cost much less than the aggregate
problem.

The distributed hierarchical clustering algorithm proposed here is in the context of
centroid-based hierarchical algorithms using Euclidean distance as a dissimilarity measure
between two data objects. We note that similar ideas can be extended to other hierarchical
clustering algorithms as well as to non-Euclidean dissimilarity measures.

6. Summary

This paper presents RACHET, a hierarchical clustering method for very large, high-dimen-
sional, horizontally distributed datasets. Most hierarchical clustering algorithms suffer from
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severe drawbacks when applied to very massive and distributed datasets: 1) they require
prohibitively high communication cost to centralize the data to a single site and 2) they
do not scale up with number of data items and with dimensionality of data sets. RACHET
makes the scalability problem more tractable. This is achieved by generating local clustering
hierarchies on smaller data subsets and using condensed cluster summaries for the conse-
cutive agglomeration of these hierarchies while maintaining clustering quality. Moreover,
RACHET has significantly lower (linear) communication costs than traditional centralized
approaches.

Appendix A: Summary of datasets statistics

Feature Minimal Maximal Mean Standard
number feature value feature value feature value deviation

E.coli

1 0.00 0.89 0.50 0.19

2 0.16 1.00 0.50 0.15

3 0.48 1.00 0.50 0.09

4 0.50 1.00 0.50 0.03

5 0.00 0.88 0.50 0.12

6 0.03 1.00 0.50 0.22

7 0.00 0.99 0.50 0.21

Boston Housing

1 0.01 88.98 3.61 8.60

2 0.00 100.00 11.36 23.32

3 0.46 27.74 11.14 6.86

4 0.00 1.00 0.07 0.25

5 0.39 0.87 0.55 0.12

6 3.56 8.78 6.28 0.70

7 2.90 100.98 68.57 28.15

8 1.13 12.13 3.80 2.11

9 1.00 24.00 9.55 8.71

10 187.00 711.00 408.24 168.54

11 12.60 22.00 18.46 2.16

12 0.32 396.90 356.67 91.29

13 1.73 37.97 12.65 7.14

14 5.00 50.00 22.53 9.20

Pima Indians Diabetes

1 0.00 17.00 3.8 3.4

2 0.00 199.00 120.9 32

(Continued on next page.)
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(Continued).

Feature Minimal Maximal Mean Standard
number feature value feature value feature value deviation

3 0.00 122.00 69.1 19.4

4 0.00 99.00 20.5 16

5 0.00 846.00 79.8 115.2

6 0.00 67.10 32 7.9

7 0.08 2.42 0.5 0.3

8 21.00 81.00 33.2 11.8
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