Free Science Home

personal home page of

Anatoli V. Melechko

Home

Research

Publications

Contact info

Curriculum vitae

Sergey Meleshko

Art

Pets

Photo galleries

Funny stuff  

Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly

The following article appeared in J. Appl. Phys. 97, 041301 (2005) and may be found at (URL/link for published article abstract).

(full text pdf)

Copyright (2005) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

A. V. Melechko
Molecular-Scale Engineering and Nanoscale Technologies Research Group, Oak Ridge National Laboratory, P.O. Box 2008, MS 6006, Oak Ridge, Tennessee 37831-6006 and Materials Science and Engineering Department, University of Tennessee, Knoxville, Tennessee 37996-2200
V. I. Merkulov and T. E. McKnight
Molecular-Scale Engineering and Nanoscale Technologies Research Group, Oak Ridge National Laboratory, P.O. Box 2008, MS 6006, Oak Ridge, Tennessee 37831-6006
M. A. Guillorn
Cornell Nanoscale Science and Technology Facility, Cornell University, Ithaca, New York 14853-2000
K. L. Klein
Molecular-Scale Engineering and Nanoscale Technologies Research Group, Oak Ridge National Laboratory, P.O. Box 2008, MS 6006, Oak Ridge, Tennessee 37831-6006 and Materials Science and Engineering Department, University of Tennessee, Knoxville, Tennessee 37996-2200
D. H. Lowndes
Thin Film and Nanostructured Materials Physics Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056 and Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056
M. L. Simpson
Molecular-Scale Engineering and Nanoscale Technologies Research Group, Oak Ridge National Laboratory, P.O. Box 2008, MS 6006, Oak Ridge, Tennessee 37831-6006, Materials Science and Engineering Department, University of Tennessee, Knoxville, Tennessee 37996-2200, and Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056

 

(Received 10 September 2004; accepted 17 December 2004; published online 3 February 2005)

The controlled synthesis of materials by methods that permit their assembly into functional nanoscale structures lies at the crux of the emerging field of nanotechnology. Although only one of several materials families is of interest, carbon-based nanostructured materials continue to attract a disproportionate share of research effort, in part because of their wide-ranging properties. Additionally, developments of the past decade in the controlled synthesis of carbon nanotubes and nanofibers have opened additional possibilities for their use as functional elements in numerous applications. Vertically aligned carbon nanofibers (VACNFs) are a subclass of carbon nanostructured materials that can be produced with a high degree of control using catalytic plasma-enhanced chemical-vapor deposition (C-PECVD). Using C-PECVD the location, diameter, length, shape, chemical composition, and orientation can be controlled during VACNF synthesis. Here we review the CVD and PECVD systems, growth control mechanisms, catalyst preparation, resultant carbon nanostructures, and VACNF properties. This is followed by a review of many of the application areas for carbon nanotubes and nanofibers including electron field-emission sources, electrochemical probes, functionalized sensor elements, scanning probe microscopy tips, nanoelectromechanical systems (NEMS), hydrogen and charge storage, and catalyst support. We end by noting gaps in the understanding of VACNF growth mechanisms and the challenges remaining in the development of methods for an even more comprehensive control of the carbon nanofiber synthesis process. ©2005 American Institute of Physics


doi:10.1063/1.1857591
PACS: 81.05.Uw, 81.07.De, 81.16.Hc, 81.15.Gh, 79.70.+q, 61.46.+w, 68.65.-k, 52.77.-j, 85.85.+j, 85.35.Kt        Additional Information

View ISI's Web of Science data for this article: [ Source Abstract  | Related Articles  ]

References

Citation links [e.g., Phys. Rev. D 40, 2172 (1989)] go to online journal abstracts. Other links (see Reference Information) are available with your current login. Navigation of links may be more efficient using a second browser window.
  1. T.V. Hughes and C.R. Chambers, Manufacture of Carbon Filaments, US Patent No. 405, 480, (1889).
    L. V. Radushkevich and V. M. Lukyanovich, Zh. Fiz. Khim. 26, 88 (1952).
  2. R. T. K. Baker, Carbon 27, 315 (1989). [ISI]
  3. R.T. K. Baker and P.S. Harris, in Chemistry and Physics of Carbon, edited by P. L. Walker (Marcel Dekker, New York, 1978), pp. 83–165.
  4. H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985). [Inspec] [ISI]
  5. S. Iijima, Nature (London) 354, 56 (1991). [Inspec] [ISI]
  6. Y. Chen, Z. L. Wang, J. S. Yin, D. J. Johnson, and R. H. Prince, Chem. Phys. Lett. 272, 178 (1997). [Inspec] [ISI]
  7. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science 282, 1105 (1998). [ISI] [MEDLINE]
  8. V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, and E. Voelkl, Appl. Phys. Lett. 76, 3555 (2000). [ISI]
  9. Z. F. Ren et al., Appl. Phys. Lett. 75, 1086 (1999). [ISI]
  10. K. P. De Jong and J. W. Geus, Catal. Rev. - Sci. Eng. 42, 481 (2000).
  11. N. M. Rodriguez, J. Mater. Res. 8, 3233 (1993). [SPIN] [ISI]
  12. M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash, Plasma Sources Sci. Technol. 12, 205 (2003).
  13. H. J. Dai, Surf. Sci. 500, 218 (2002). [Inspec] [ISI]
  14. M.S. Dresselhaus and M. Endo, in Carbon Nanotubes (2001), pp. 11–28.
  15. K.B. K. Teo, C. Singh, M. Chhowalla, and W.I. Milne, in Encyclopedia of Nanoscience and Nanotechnology, edited by H. S. Nalwa (American Scientific Publishers, 2003), pp. 1–22.
  16. A. Huczko, Appl. Phys. A: Mater. Sci. Process. 74, 617 (2002). [Inspec]
  17. L. M. Dai, A. Patil, X. Y. Gong, Z. X. Guo, L. Q. Liu, Y. Liu, and D. B. Zhu, ChemPhysChem 4, 1150 (2003). [MEDLINE]
  18. A. Krishnan, E. Dujardin, M. M. J. Treacy, J. Hugdahl, S. Lynum, and T. W. Ebbesen, Nature (London) 388, 451 (1997). [Inspec] [ISI]
  19. M. Endo et al., Appl. Phys. Lett. 80, 1267 (2002).
  20. A. Chambers, C. Park, R. T. K. Baker, and N. M. Rodriguez, J. Phys. Chem. B 102, 4253 (1998). [Inspec] [ISI]
  21. L. Delzeit, I. McAninch, B. A. Cruden, D. Hash, B. Chen, J. Han, and M. Meyyappan, J. Appl. Phys. 91, 6027 (2002). [ISI]
  22. Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, Science 294, 1313 (2001). [Inspec] [MEDLINE]
  23. V. I. Merkulov, A. V. Melechko, M. A. Guillorn, D. H. Lowndes, and M. L. Simpson, Appl. Phys. Lett. 79, 2970 (2001). [ISI]
  24. J. Koehne, H. Chen, J. Li, A. M. Cassell, Q. Ye, H. T. Ng, J. Han, and M. Meyyappan, Nanotechnology 14, 1239 (2003). [ISI]
  25. X. J. Yang et al., Nano Lett. 3, 1751 (2003).
  26. M. A. Guillorn, M. D. Hale, V. I. Merkulov, M. L. Simpson, G. Y. Eres, H. Cui, A. A. Puretzky, and D. B. Geohegan, Appl. Phys. Lett. 81, 2860 (2002). [ISI]
  27. L. R. Baylor et al., J. Vac. Sci. Technol. B 20, 2646 (2002).
  28. M. A. Guillorn, A. V. Melechko, V. I. Merkulov, E. D. Ellis, C. L. Britton, M. L. Simpson, D. H. Lowndes, and L. R. Baylor, Appl. Phys. Lett. 79, 3506 (2001).
  29. V. I. Merkulov, A. V. Melechko, M. A. Guillorn, D. H. Lowndes, and M. L. Simpson, Chem. Phys. Lett. 350, 381 (2001). [Inspec] [ISI]
  30. M. A. Guillorn, A. V. Melechko, V. I. Merkulov, D. K. Hensley, M. L. Simpson, and D. H. Lowndes, Appl. Phys. Lett. 81, 3660 (2002). [ISI]
  31. M. A. Guillorn, M. L. Simpson, G. J. Bordonaro, V. I. Merkulov, L. R. Baylor, and D. H. Lowndes, J. Vac. Sci. Technol. B 19, 573 (2001).
  32. A. V. Melechko, T. E. McKnight, M. A. Guillorn, V. I. Merkulov, B. Ilic, M. J. Doktycz, D. H. Lowndes, and M. L. Simpson, Appl. Phys. Lett. 82, 976 (2003). [ISI]
  33. J. Moser, R. Panepucci, Z. P. Huang, W. Z. Li, Z. F. Ren, A. Usheva, and M. J. Naughton, J. Vac. Sci. Technol. B 21, 1004 (2003).
  34. Q. Ye, A. Cassell, H. Liu, K.-J. Chao, J. Han, and M. Meyyappan, Nano Lett. 4, 1301 (2004).
  35. Z. G. Mao, A. Garg, and S. B. Sinnott, Nanotechnology 10, 273 (1999). [Inspec] [ISI]
  36. W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature (London) 347, 354 (1990). [Inspec] [ISI]
  37. C. V. Nguyen, L. Delziet, K. Matthews, B. Chen, and M. Meyyappan, J. Nanosci. Nanotechnol. 3, 121 (2003).
  38. A. V. Melechko et al., J. Vac. Sci. Technol. B 20, 2730 (2002).
  39. A. M. Cassell, J. A. Raymakers, J. Kong, and H. J. Dai, J. Phys. Chem. B 103, 6484 (1999). [Inspec] [ISI]
  40. M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. A. Smith, and R. E. Smalley, J. Vac. Sci. Technol. A 19, 1800 (2001). [ISI]
  41. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, Science 274, 1701 (1996). [Inspec] [ISI] [MEDLINE]
  42. A. Moisala, A. G. Nasibulin, and E. I. Kauppinen, J. Phys.: Condens. Matter 15, S3011 (2003). [Inspec] [ISI]
  43. H. Kanzow and A. Ding, Phys. Rev. B 60, 11180 (1999). [ISI]
  44. L. Delzeit, C. V. Nguyen, B. Chen, R. Stevens, A. Cassell, J. Han, and M. Meyyappan, J. Phys. Chem. B 106, 5629 (2002). [Inspec] [ISI]
  45. G. Eres, A. A. Puretzky, D. B. Geohegan, and H. Cui, Appl. Phys. Lett. 84, 1759 (2004).
  46. G. Eres, A.A. Puretzky, D.B. Geohegan, and H. Cui, In situ Control of Catalyst Efficiency in Chemical Vapor Deposition of Long Vertically Aligned Carbon Nanotubes, in March Meeting of American Physical Society, Montreal, Canada, 22–26 March 2004 (unpublished).
  47. P. A. Tesner and I. S. Rafalkes, Dokl. Akad. Nauk SSSR 87, 821 (1952).
  48. P. A. Tesner, R. Ey, I. S. Rafalkes, and E. F. Arefieva, Carbon 8, 453 (1970).
  49. R. T. K. Baker, M. A. Barber, R. J. Waite, P. S. Harris, and F. S. Feates, J. Catal. 26, 51 (1972). [ISI]
  50. R. T. Yang and J. P. Chen, J. Catal. 115, 52 (1989). [ISI]
  51. J. R. Nielsen and D. L. Trimm, J. Catal. 48, 155 (1977).
  52. A. Sacco, P. Thacker, T. N. Chang, and A. T. S. Chiang, J. Catal. 85, 224 (1984). [ISI]
  53. A. Kock, P. K. Debokx, E. Boellaard, W. Klop, and J. W. Geus, J. Catal. 96, 468 (1985). [ISI]
  54. I. Alstrup, J. Catal. 109, 241 (1988). [ISI]
  55. J. W. Snoeck, G. F. Froment, and M. Fowles, J. Catal. 169, 240 (1997).
  56. P. M. Ajayan, Nature (London) 427, 402 (2004).
  57. S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, and J. K. Norskov, Nature (London) 427, 426 (2004). [ISI] [MEDLINE]
  58. M. Chhowalla et al., J. Appl. Phys. 90, 5308 (2001). [ISI]
  59. S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. J. Dai, Science 283, 512 (1999). [Inspec] [ISI] [MEDLINE]
  60. C. Bower, O. Zhou, W. Zhu, D. J. Werder, and S. H. Jin, Appl. Phys. Lett. 77, 2767 (2000). [ISI]
  61. J. I. Sohn, S. Lee, Y. H. Song, S. Y. Choi, K. I. Cho, and K. S. Nam, Appl. Phys. Lett. 78, 901 (2001). [ISI]
  62. A. V. Melechko, V. I. Merkulov, D. H. Lowndes, M. A. Guillorn, and M. L. Simpson, Chem. Phys. Lett. 356, 527 (2002). [Inspec] [ISI]
  63. D. C. Li, L. M. Dai, S. M. Huang, A. W. H. Mau, and Z. L. Wang, Chem. Phys. Lett. 316, 349 (2000). [Inspec] [ISI]
  64. J. Li, C. Papadopoulos, J. M. Xu, and M. Moskovits, Appl. Phys. Lett. 75, 367 (1999). [ISI]
  65. F. Jansen, Plasma Enhanced Chemical Vapor Depositon, in AVS Monograph Series, edited by H. G. Tompkins (American Vacuum Society, New York, 1998).
  66. S. Honda, M. Katayama, K. Y. Lee, T. Ikuno, S. Ohkura, K. Oura, H. Furuta, and T. Hirao, Jpn. J. Appl. Phys., Part 2 42, L441 (2003). [ISI]
  67. K. Y. Lee et al., Jpn. J. Appl. Phys., Part 2 42, L804 (2003). [ISI]
  68. B. O. Boskovic, V. Stolojan, R. U. A. Khan, S. Haq, and S. R. P. Silva, Nat. Mater. 1, 165 (2002). [MEDLINE]
  69. S. Hofmann, C. Ducati, J. Robertson, and B. Kleinsorge, Appl. Phys. Lett. 83, 135 (2003). [ISI]
  70. K. Hamad-Schifferli, J. J. Schwartz, A. T. Santos, S. G. Zhang, and J. M. Jacobson, Nature (London) 415, 152 (2002). [MEDLINE]
  71. R. Hergt, W. Andra, C. G. d'Ambly, I. Hilger, W. A. Kaiser, U. Richter, and H. G. Schmidt, IEEE Trans. Magn. 34, 3745 (1998). [ISI]
  72. K. B. K. Teo et al., Nano Lett. 4, 921 (2004).
  73. N. Mutsukura, K. Kobayashi, and Y. Machi, J. Appl. Phys. 68, 2657 (1990). [ISI]
  74. D. R. Cote, S. V. Nguyen, A. K. Stamper, D. S. Armbrust, D. Tobben, R. A. Conti, and G. Y. Lee, IBM J. Res. Dev. 43, 5 (1999). [Inspec] [ISI]
  75. M. Funer, C. Wild, and P. Koidl, Appl. Phys. Lett. 72, 1149 (1998). [ISI]
  76. Y. Y. Wei, G. Eres, V. I. Merkulov, and D. H. Lowndes, Appl. Phys. Lett. 78, 1394 (2001). [ISI]
  77. V. I. Merkulov, M. A. Guillorn, D. H. Lowndes, M. L. Simpson, and E. Voelkl, Appl. Phys. Lett. 79, 1178 (2001). [ISI]
  78. K. B. K. Teo et al., Appl. Phys. Lett. 79, 1534 (2001). [ISI]
  79. K. B. K. Teo et al., J. Vac. Sci. Technol. B 20, 116 (2002).
  80. K. B. K. Teo et al., Nanotechnology 14, 204 (2003).
  81. M. Tanemura, K. Iwata, K. Takahashi, Y. Fujimoto, F. Okuyama, H. Sugie, and V. Filip, J. Appl. Phys. 90, 1529 (2001). [ISI]
  82. J. H. Yim, S. Choi, S. Lee, and K. H. Koh, J. Vac. Sci. Technol. B 22, 1308 (2004).
  83. M. A. Guillorn, T. E. McKnight, A. Melechko, V. I. Merkulov, P. F. Britt, D. W. Austin, D. H. Lowndes, and M. L. Simpson, J. Appl. Phys. 91, 3824 (2002). [ISI]
  84. B. A. Cruden, A. M. Cassell, Q. Ye, and M. Meyyappan, J. Appl. Phys. 94, 4070 (2003). [ISI]
  85. Y. Chen, L. P. Guo, D. J. Johnson, and R. H. Prince, J. Cryst. Growth 193, 342 (1998). [Inspec] [ISI]
  86. R. Haubner and B. Lux, Diamond Relat. Mater. 2, 1277 (1993). [Inspec] [ISI]
  87. D. Hash, D. Bose, T. R. Govindan, and M. Meyyappan, J. Appl. Phys. 93, 6284 (2003).
  88. D. B. Hash and M. Meyyappan, J. Appl. Phys. 93, 750 (2003). [ISI]
  89. J. Han, W. S. Yang, J. B. Yoo, and C. Y. Park, J. Appl. Phys. 88, 7363 (2000). [ISI]
  90. Q. Yang, C. Xiao, W. Chen, A. K. Singh, T. Asai, and A. Hirose, Diamond Relat. Mater. 12, 1482 (2003).
  91. K. M. Lee, H. J. Han, S. H. Choi, K. H. Park, S. Oh, S. Lee, and K. H. Koh, J. Vac. Sci. Technol. B 21, 623 (2003).
  92. G. W. Ho, A. T. S. Wee, J. Lin, and W. C. Tjiu, Thin Solid Films 388, 73 (2001). [Inspec] [ISI]
  93. T. Hirata, N. Satake, G. H. Jeong, T. Kato, R. Hatakeyama, K. Motomiya, and K. Tohji, Appl. Phys. Lett. 83, 1119 (2003). [ISI]
  94. T. Ikuno et al., Surf. Interface Anal. 35, 15 (2003).
  95. S. S. Kim, H. Y. Chang, C. S. Chang, and N. S. Yoon, Appl. Phys. Lett. 77, 492 (2000). [ISI]
  96. P. E. Nolan, D. C. Lynch, and A. H. Cutler, J. Phys. Chem. B 102, 4165 (1998). [ISI]
  97. J. B. O. Caughman, L. R. Baylor, M. A. Guillorn, V. I. Merkulov, D. H. Lowndes, and L. F. Allard, Appl. Phys. Lett. 83, 1207 (2003). [ISI]
  98. O. M. Kuttel, O. Groening, C. Emmenegger, and L. Schlapbach, Appl. Phys. Lett. 73, 2113 (1998). [ISI]
  99. D. Ugarte, Nature (London) 359, 707 (1992). [Inspec] [ISI] [MEDLINE]
  100. L. C. Qin, D. Zhou, A. R. Krauss, and D. M. Gruen, Appl. Phys. Lett. 72, 3437 (1998). [ISI]
  101. C. Bower, W. Zhu, S. H. Jin, and O. Zhou, Appl. Phys. Lett. 77, 830 (2000). [ISI]
  102. M. Yoshimura, S. Jo, and K. Ueda, Jpn. J. Appl. Phys., Part 1 42, 4841 (2003).
  103. Y. S. Woo, D. Y. Jeon, I. T. Han, N. S. Lee, J. E. Jung, and J. M. Kim, Diamond Relat. Mater. 11, 59 (2002). [Inspec] [ISI]
  104. C. L. Tsai, C. F. Chen, and L. K. Wu, Appl. Phys. Lett. 81, 721 (2002). [ISI]
  105. H. Cui, O. Zhou, and B. R. Stoner, J. Appl. Phys. 88, 6072 (2000). [ISI]
  106. S. H. Tsai, C. W. Chao, C. L. Lee, and H. C. Shih, Appl. Phys. Lett. 74, 3462 (1999). [ISI]
  107. Q. Zhang, S. F. Yoon, J. Ahn, B. Gan, Rusli, and M. B. Yu, J. Phys. Chem. Solids 61, 1179 (2000). [Inspec] [ISI]
  108. Y. C. Choi, Y. M. Shin, S. C. Lim, D. J. Bae, Y. H. Lee, B. S. Lee, and D. C. Chung, J. Appl. Phys. 88, 4898 (2000). [ISI]
  109. Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, I. T. Han, W. B. Choi, N. S. Lee, and J. M. Kim, Synth. Met. 108, 159 (2000). [Inspec] [ISI]
  110. H. Sato, H. Tagegawa, and Y. Saito, J. Vac. Sci. Technol. B 21, 2564 (2003).
  111. M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, Appl. Phys. Lett. 77, 3468 (2000). [ISI]
  112. C. H. Lin, H. L. Chang, C. M. Hsu, A. Y. Lo, and C. T. Kuo, Diamond Relat. Mater. 12, 1851 (2003). [Inspec] [ISI]
  113. D. J. Willins and R. L. F. Boyd, J. Phys. D 6, 1447 (1973).
  114. A. Huczko, H. Lange, M. Sioda, Y. Q. Zhu, W. K. Hsu, and D. R. M. Walton, J. Phys. Chem. B 106, 1534 (2002).
  115. Y. Y. Xia, Y. G. Mu, Y. C. Ma, S. Y. Li, H. D. Zhang, C. Y. Tan, and L. M. Mei, Nucl. Instrum. Methods Phys. Res. B 155, 395 (1999).
  116. M. W. Li, Z. Hu, X. Z. Wang, Q. Wu, and Y. Chen, J. Mater. Sci. Lett. 22, 1223 (2003).
     
  117. A. Marafee, C. J. Liu, G. H. Xu, R. Mallinson, and L. Lobban, Ind. Eng. Chem. Res. 36, 632 (1997).
  118. V. I. Merkulov, A. V. Melechko, M. A. Guillorn, D. H. Lowndes, and M. L. Simpson, Appl. Phys. Lett. 80, 476 (2002). [ISI]
  119. J. Ma, C. Park, N. M. Rodriguez, and R. T. K. Baker, J. Phys. Chem. B 105, 11 994 (2001).
  120. V. I. Merkulov, D. K. Hensley, A. V. Melechko, M. A. Guillorn, D. H. Lowndes, and M. L. Simpson, J. Phys. Chem. B 106, 10 570 (2002). [Inspec] [ISI]
  121. V. Merkulov, A. V. Melechko, M. A. Guillorn, D. H. Lowndes, and M. L. Simpson, Chem. Phys. Lett. 361, 492 (2002).
  122. M. Laudon, N. N. Carlson, and M. P. Masqueller, Appl. Phys. Lett. 78, 201 (2001). [ISI]
  123. V. I. Merkulov, A. V. Melechko, M. A. Guillorn, M. L. Simpson, D. H. Lowndes, J. H. Whealton, and R. J. Raridon, Appl. Phys. Lett. 80, 4816 (2002). [ISI]
  124. A. V. Melechko, T. E. McKnight, D. K. Hensley, M. A. Guillorn, A. Y. Borisevich, V. I. Merkulov, D. H. Lowndes, and M. L. Simpson, Nanotechnology 14, 1029 (2003).
  125. K. M. Ryu, M. Y. Kang, Y. D. Kim, and H. T. Jeon, Jpn. J. Appl. Phys., Part 1 42, 3578 (2003).
  126. M. Nihei, A. Kawabata, and Y. Awano, Jpn. J. Appl. Phys., Part 2 42, L721 (2003). [ISI]
  127. P. M. Campbell, E. S. Snow, and J. P. Novak, Appl. Phys. Lett. 81, 4586 (2002).
  128. C. J. Lee, S. C. Lyu, Y. R. Cho, J. H. Lee, and K. I. Cho, Chem. Phys. Lett. 341, 245 (2001). [Inspec]
  129. L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen, and M. Meyyappan, Chem. Phys. Lett. 348, 368 (2001). [Inspec] [ISI]
  130. H. M. Christen, A. A. Puretzky, H. Cui, P. H. Belay, P. H. Fleming, D. B. Geohegan, and D. H. Lowndes, Nano Lett. 4, 1939 (2004).
  131. S. Y. Zaginaichenko, D. V. Schur, and Z. A. Matysina, Carbon 41, 1349 (2003).
  132. M. S. Kim, N. M. Rodriguez, and R. T. K. Baker, J. Catal. 131, 60 (1991). [ISI]
  133. P. D. Kichambare, D. Qian, E. C. Dickey, and C. A. Grimes, Carbon 40, 1903 (2002).
  134. Y. Nishiyama and Y. Tamai, J. Catal. 33, 98 (1974).
  135. K. Kamada et al., Appl. Surf. Sci. 212, 383 (2003).
  136. I. Alstrup, M. T. Tavares, C. A. Bernardo, O. Sorensen, and J. R. Rostrup-Nielsen, Mater. Corros. 49, 367 (1998).
  137. A. Chambers, N. M. Rodriguez, and R. T. K. Baker, J. Mater. Res. 11, 430 (1996). [SPIN] [ISI]
  138. D. Pradhan, M. Sharon, M. Kumar, and Y. Ando, J. Nanosci. Nanotechnol. 3, 215 (2003).
  139. W. Z. Li, J. G. Wen, and Z. F. Ren, Appl. Phys. Lett. 79, 1879 (2001). [ISI]
  140. C. A. Bernardo, I. Alstrup, and J. R. Rostrup-Nielsen, J. Catal. 96, 517 (1985).
  141. L. B. Avdeeva, O. V. Goncharova, D. I. Kochubey, V. I. Zaikovskii, L. M. Plyasova, B. N. Novgorodov, and S. K. Shaikhutdinov, Appl. Catal., A 141, 117 (1996). [ISI]
  142. B. Gan et al., Diamond Relat. Mater. 9, 897 (2000). [Inspec] [ISI]
  143. H. T. Ng, B. Chen, J. E. Koehne, A. M. Cassell, J. Li, J. Han, and M. Meyyappan, J. Phys. Chem. B 107, 8484 (2003). [ISI]
  144. A. M. Cassell, Q. Ye, B. A. Cruden, J. Li, P. C. Sarrazin, H. T. Ng, J. Han, and M. Meyyappan, Nanotechnology 15, 9 (2004). [Inspec] [ISI]
  145. D. H. Kim and H. R. Lee, J. Korean Phys. Soc. 44, L208 (2004).
  146. A. G. Naumovets and Z. Y. Zhang, Surf. Sci. 500, 414 (2002). [Inspec] [ISI]
  147. H. Cui, X. Yang, M. L. Simpson, D. H. Lowndes, and M. Varela, Appl. Phys. Lett. 84, 4077 (2004). [ISI]
  148. T. Ichihashi, J. Fujita, M. Ishida, and Y. Ochiai, Phys. Rev. Lett. 92, 215702 (2004).
  149. M.S. Dresselhaus, Encyclopedia of Materials: Science and Technology (Elsevier Science, New York, 2001).
  150. R. Bacon, J. Appl. Phys. 31, 283 (1960). [ISI]
  151. Y. Chen, D. T. Shaw, and L. P. Guo, Appl. Phys. Lett. 76, 2469 (2000). [ISI]
  152. M. Endo et al., Carbon 41, 1941 (2003).
  153. N. A. Kiselev et al., Carbon 42, 149 (2004). [ISI]
  154. M. H. Kuang, Z. L. Wang, X. D. Bai, J. D. Guo, and E. G. Wang, Appl. Phys. Lett. 76, 1255 (2000). [ISI]
  155. L. Dong, J. Jiao, C. Pan, and D. W. Tuggle, Appl. Phys. A: Mater. Sci. Process. 78, 9 (2004).
  156. S. B. Lee, K. B. K. Teo, M. Chhowalla, D. G. Hasko, G. A. J. Amaratunga, W. I. Milne, and H. Ahmed, Microelectron. Eng. 61–62, 475 (2002). [Inspec]
  157. C. Schonenberger, A. Bachtold, C. Strunk, J. P. Salvetat, and L. Forro, Appl. Phys. A: Mater. Sci. Process. A69, 283 (1999). [Inspec] [ISI]
  158. A. Thess et al., Science 273, 483 (1996). [Inspec] [ISI] [MEDLINE]
  159. L. Zhang, D. Austin, V. I. Merkulov, A. V. Melechko, K. L. Klein, M. A. Guillorn, D. H. Lowndes, and M. L. Simpson, Appl. Phys. Lett. 84, 3972 (2004). [ISI]
  160. R. H. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928).
  161. T. Utsumi, IEEE Trans. Electron Devices 38, 2276 (1991). [Inspec] [ISI]
  162. F. S. Baker, J. Williams, and A. R. Osborn, Nature (London) 239, 96 (1972). [Inspec] [ISI]
  163. C. Lea, J. Phys. D 6, 1105 (1973). [Inspec] [ISI]
  164. K. A. Dean and B. R. Chalamala, Appl. Phys. Lett. 75, 3017 (1999). [ISI]
  165. L.R. Baylor (private communication).
  166. W. A. Deheer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995). [Inspec] [ISI]
  167. V. I. Merkulov, D. H. Lowndes, and L. R. Baylor, J. Appl. Phys. 89, 1933 (2001). [ISI]
  168. W.D. J. Callister, Materials Science and Engineering an Introduction, 6th ed. (Wiley, New York, 2003).
  169. B. McEnaney, Encyclopedia of Materials: Science and Technology (Amsterdam, New York, 2001), pp. 967–975.
  170. B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R. O. Ritchie, Mater. Sci. Eng., A 334, 173 (2002). [Inspec] [ISI]
  171. R. S. Ruoff, D. Qian, and W. K. Liu, C. R. Phys. 4, 993 (2003).
  172. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science 287, 637 (2000). [Inspec] [ISI] [MEDLINE]
  173. R. P. Gao, Z. L. Wang, Z. G. Bai, W. A. de Heer, L. M. Dai, and M. Gao, Phys. Rev. Lett. 85, 622 (2000). [ISI] [MEDLINE]
  174. E. T. Thostenson, Z. F. Ren, and T. W. Chou, Compos. Sci. Technol. 61, 1899 (2001). [Inspec] [ISI]
  175. M. C. Weisenberger, E. A. Grulke, D. Jacques, T. Rantell, and R. Andrews, J. Nanosci. Nanotechnol. 3, 535 (2003).
  176. R.L. McCreery, in Electroanalytical Chemistry, edited by A. J. Bard (Marcel Dekker, New York, 1991).
  177. R. J. Chen, Y. G. Zhan, D. W. Wang, and H. J. Dai, J. Am. Chem. Soc. 123, 3838 (2001). [MEDLINE]
  178. J. L. Bahr and J. M. Tour, J. Mater. Chem. 12, 1952 (2002).
  179. E. T. Mickelson, C. B. Huffman, A. G. Rinzler, R. E. Smalley, R. H. Hauge, and J. L. Margrave, Chem. Phys. Lett. 296, 188 (1998). [Inspec] [ISI]
  180. G.T. Hermanson, Boiconjugate Techniqures (Academic, San Diego, 1996).
     
  181. Y. H. Lin, F. Lu, Y. Tu, and Z. F. Ren, Nano Lett. 4, 191 (2004).
  182. C. V. Nguyen, L. Delzeit, A. M. Cassell, J. Li, J. Han, and M. Meyyappan, Nano Lett. 2, 1079 (2002). [Inspec]
  183. T. E. McKnight et al., Nanotechnology 14, 551 (2003). [Inspec] [ISI]
  184. K. Kinoshita, Carbon: Electrochemical and Physiological Properties (Wiley, New York 1988).
  185. J. Li, A. Cassell, L. Delzeit, J. Han, and M. Meyyappan, J. Phys. Chem. B 106, 9299 (2002). [ISI]
  186. M. A. Murphy, G. D. Wilcox, R. H. Dahm, and F. Marken, Electrochem. Commun. 5, 51 (2003).
  187. T. E. McKnight et al., J. Phys. Chem. B 107, 10722 (2003).
  188. Y. Tu, Y. H. Lin, and Z. F. Ren, Nano Lett. 3, 107 (2003).
  189. J. Li, H. T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han, and M. Meyyappan, Nano Lett. 3, 597 (2003). [Inspec]
  190. T. E. McKnight, A. V. Melechko, D. W. Austin, T. Sims, M. A. Guillorn, and M. L. Simpson, J. Phys. Chem. B 108, 7115 (2004).
  191. J. H. Chen, Z. P. Huang, D. Z. Wang, S. X. Yang, W. Z. Li, J. G. Wen, and Z. F. Ren, Synth. Met. 125, 289 (2001).
  192. J. Koehne, J. Li, A. M. Cassell, H. Chen, Q. Ye, H. T. Ng, J. Han, and M. Meyyappan, J. Mater. Chem. 14, 676 (2004).
  193. L. Zhang, A. V. Melechko, V. I. Merkulov, M. A. Guillorn, M. L. Simpson, D. H. Lowndes, and M. J. Doktycz, Appl. Phys. Lett. 81, 135 (2002). [ISI]
  194. M. A. Guillorn, A. V. Melechko, V. I. Merkulov, E. D. Ellis, M. L. Simpson, L. R. Baylor, and G. J. Bordonaro, J. Vac. Sci. Technol. B 19, 2598 (2001).
  195. T. Ikuno, M. Katayama, K. Y. Lee, T. Kuzuoka, J. G. Lee, S. Honda, H. Mori, and K. Oura, Jpn. J. Appl. Phys., Part 2 43, L987 (2004).
  196. S. M. Huang, L. M. Dai, and A. W. H. Mau, J. Phys. Chem. B 103, 4223 (1999). [Inspec] [ISI]
  197. T. Ito, L. Sun, and R. M. Crooks, Electrochem. Solid-State Lett. 6, C4 (2003). [ISI]
  198. B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L. G. Bachas, Science 303, 62 (2004). [Inspec] [MEDLINE]
  199. D. Temple, Mater. Sci. Eng., R. 24, 185 (1999). [Inspec] [ISI]
  200. X. P. Xu and G. R. Brandes, Appl. Phys. Lett. 74, 2549 (1999). [ISI]
  201. G. Pirio, P. Legagneux, D. Pribat, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, and W. I. Milne, Nanotechnology 13, 1 (2002). [ISI]
  202. X. Xu and G.R. Brandes, Carbon nanotube-based vacuum microelectronic gated cathode, in Materials Issues in Vacuum Microelectronics Symposium, 13–16 April 1998 (Materials Research Society, San Francisco, CA, 1998).
  203. K. B. K. Teo et al., J. Vac. Sci. Technol. B 21, 693 (2003).
  204. M. A. Guillorn et al., J. Vac. Sci. Technol. B 22, 35 (2004).
  205. L. R. Baylor et al., J. Vac. Sci. Technol. B 22, 3021 (2004).
  206. OxfordInstruments, Oxford instruments.
  207. H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi, and F. Okuyama, Appl. Phys. Lett. 78, 2578 (2001). [ISI]
  208. G. Z. Yue et al., Appl. Phys. Lett. 81, 355 (2002).
  209. T. Matsumoto and H. Mimura, Appl. Phys. Lett. 82, 1637 (2003).
  210. R. A. Wallingford and A. G. Ewing, Anal. Chem. 59, 1762 (1987). [ISI]
  211. A. J. Bard, F. R. F. Fan, J. Kwak, and O. Lev, Anal. Chem. 61, 132 (1989). [ISI]
  212. R. M. Wightman et al., Proc. Natl. Acad. Sci. U.S.A. 88, 10754 (1991). [ISI] [MEDLINE]
  213. G. L. Prasanna and T. Panda, Bioprocess Eng. 16, 261 (1997).
  214. A. Radford, S. Pope, A. Sazci, M. J. Fraser, and J. H. Parish, Mol. Gen. Genet. 184, 567 (1981).
  215. N. J. Taylor and C. M. Fauquet, DNA Cell Biol. 21, 963 (2002).
  216. T. E. McKnight, A. V. Melechko, D. K. Hensley, D. G. J. Mann, G. D. Griffin, and M. L. Simpson, Nano Lett. 4, 1213 (2004).
  217. G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986). [MEDLINE]
  218. L. Delzeit, C. Nguyen, R. Stevens, J. Han, and M. Meyyappan, Nanotechnology 13, 280 (2002). [Inspec] [ISI]
  219. C. V. Nguyen, K. J. Chao, R. M. D. Stevens, L. Delzeit, A. Cassell, J. Han, and M. Meyyappan, Nanotechnology 12, 363 (2001). [Inspec]
  220. J. H. Hafner, C. L. Cheung, and C. M. Lieber, J. Am. Chem. Soc. 121, 9750 (1999). [ISI]
  221. P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science 283, 1513 (1999). [Inspec] [ISI] [MEDLINE]
  222. D. M. Eigler and E. K. Schweizer, Nature (London) 344, 524 (1990). [Inspec] [ISI]
  223. P. Kim and C. M. Lieber, Science 286, 2148 (1999). [Inspec] [ISI] [MEDLINE]
  224. S. Akita et al., Appl. Phys. Lett. 79, 1691 (2001). [ISI]
  225. B. L. Fletcher et al., Nano Lett. 4, 1809 (2004).
  226. P. M. Ajayan and O. Z. Zhou, Top. Appl. Phys. 800, 391 (2001).
  227. A. B. Dalton et al., Nature (London) 423, 703 (2003). [ISI]
  228. A. Zuttel, P. Sudan, P. Mauron, T. Kiyobayashi, C. Emmenegger, and L. Schlapbach, Int. J. Hydrogen Energy 27, 203 (2002). [Inspec] [ISI]
  229. Y. S. Nechaev and O. K. Alexeeva, Int. J. Hydrogen Energy 28, 1433 (2003).
  230. D. Lupu, A. R. Biris, I. Misan, A. Jianu, G. Holzhuter, and E. Burkel, Int. J. Hydrogen Energy 29, 97 (2004). [ISI]
  231. D. Lupu, A. R. Biris, I. Misan, N. Lupsa, A. S. Biris, D. A. Buzatu, and M. Kleeve, Part. Sci. Technol. 20, 225 (2002).
  232. S. Orimo, A. Zuttel, L. Schlapbach, G. Majer, T. Fukunaga, and H. Fujii, J. Alloys Compd. 356, 716 (2003).
  233. H. G. Schimmel, G. J. Kearley, M. G. Nijkamp, C. T. Visserl, K. P. de Jong, and F. M. Mulder, Chem.-Eur. J. 9, 4764 (2003). [ISI] [MEDLINE]
  234. C. Cantalini, L. Valentini, I. Armentano, L. Lozzi, J. M. Kenny, and S. Santucci, Sens. Actuators B 95, 195 (2003). [ISI]
  235. P. Serp, M. Corrias, and P. Kalck, Appl. Catal., A 253, 337 (2003). [ISI]
  236. L. Pesant, G. Wine, J. Matta, R. Vieira, N. Keller, C. Pham-Huu, and G. Ledoux, Large Scale Synthesis of Carbon Nanofibers for Use as Catalyst Support in Liquid-Phase Reactions, in 12th Brazillian Congress on Catalysis, Augra dos Reis, Rio de Janeiro, 2003 (unpublished).
  237. M. Croci, I. Arfaoui, T. Stockli, A. Chatelain, and J.-M. Bonard, Microelectron. J. 35, 329 (2004).
  238. G. H. Luo, Z. F. Li, F. Wei, L. Xiang, X. Y. Deng, and Y. Jin, Physica B 323, 314 (2002).
  239. J. Li, C. Papadopoulos, and J. Xu, Nature (London) 402, 253 (1999). [ISI] [MEDLINE]
  240. W. Hofmeister, W. P. Kang, Y. M. Wong, and J. L. Davidson, J. Vac. Sci. Technol. B 22, 1286 (2004).
  241. J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith, and R. E. Smalley, Chem. Phys. Lett. 296, 195 (1998). [Inspec] [ISI]
  242. H. T. Ng, M. L. Foo, A. P. Fang, J. Li, G. Q. Xu, S. Jaenicke, L. Chan, and S. F. Y. Li, Langmuir 18, 1 (2002).
  243. H. Terrones et al., Chem. Phys. Lett. 343, 241 (2001). [Inspec] [ISI]
  244. M. L. Mabudafhasi, R. Bodkin, C. P. Nicolaides, X. Y. Liu, M. J. Witcomb, and N. J. Coville, Carbon 40, 2737 (2002).
  245. A. W. Hull, Phys. Rev. 10, 661 (1917).
  246. Binary Alloy Phase Diagrams, 2nd ed., edited by T. B. Massalski (ASM International, Metals Park, OH, 1990), Vol. 1 and 2.
  247. A. W. Hull and W. P. Davey, Phys. Rev. 14, 54 (1919).
  248. The Properties of Natural and Synthetic Diamond, edited by J. E. Field (Academic, London, 1992).
  249. B.T. Kelly, The Physics of Graphite (Applied Science Publishers, London, 1981).
  250. D. P. Kim, Y. R. Suhng, and M. M. Labes, Carbon 30, 729 (1992).
  251. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 (1997). [Inspec] [ISI]
  252. M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996).
  253. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, Phys. Rev. B 58, 14013 (1998). [ISI]
  254. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature (London) 381, 678 (1996). [Inspec] [ISI]
  255. R. Bacon, J. Appl. Phys. 31, 323 (1960). [ISI]
  256. J. D. H. Hughes, J. Phys. D 20, 276 (1987).
  257. T. Hashishin, H. Kohara, H. Iwanaga, and S. Takeuchi, J. Ceram. Soc. Jpn. 110, 772 (2002).
  258. R. L. Jacobsen, T. M. Tritt, J. R. Guth, A. C. Ehrlich, and D. J. Gillespie, Carbon 33, 1217 (1995). [Inspec] [ISI]
(full text pdf)